85
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A simulation and experiment study on the emission reduction potential of light-duty diesel engine retrofitted with an after-treatment system: a case study

, , , , , ORCID Icon & show all
Pages 674-688 | Received 25 May 2023, Accepted 23 Nov 2023, Published online: 04 Dec 2023

References

  • Caliskan, H., and K. Mori. 2017. Environmental, enviroeconomic and enhanced thermodynamic analyses of a diesel engine with diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) after treatment systems. Energy 128:128–44. doi:10.1016/j.energy.2017.04.014.
  • Chatterjee, S., M. Naseri, and J. Li 2017. Heavy duty diesel engine emission control to meet BS VI regulations. SAE Technical Paper Series (2017-26-0125). doi:10.4271/2017-26-0125
  • Chmela, F., and G. Orthaber. 1999. Rate of heat release prediction for direct injection diesel engines based on purely mixing controlled combustion. SAE Technical Paper (1999-01-0186). doi:10.4271/1999- 01–0186.
  • Cong, D. N., K. N. Duc, and V. Nguyen. 2023. Performance and pollutant characteristics of an old generation diesel engine fuelled with dual-fuel diesel-dimethyl ether. International Journal of Ambient Energy 43 (1):555–563. doi:10.1080/01430750.2022.2137580.
  • Duc, K. N., H. N. Tien, and V. N. Duy. 2017. A study of operating characteristics of old-generation diesel engines retrofitted with turbochargers. Arabian Journal for Science and Engineering 43 (9):4443–52. doi:10.1007/s13369-017-2902-7.
  • Fayad, M. A., J. M. Herreros, F. J. Martos, and A. Tsolakis. 2015. Role of alternative fuels on particulate matter (PM) characteristics and influence of the diesel oxidation catalyst. Environmental Science & Technology 49 (19):11967–73. doi:10.1021/acs.est.5b02447.
  • Greeves, G., S. Tullis, and B. Barker 2003. Advanced two-actuator EUI and emission reduction for heavy-duty diesel engines. SAE Technical Paper (2003-01-0698). doi: 10.4271/2003-01-0698.
  • Grigoratosa, T., G. Fontarasa, B. Giechaskiela, and N. Zacharofb. 2019. Real world emissions performance of heavy-duty euro VI diesel vehicles. Atmospheric Environment 201:348–59. doi:10.1016/j.atmosenv.2018.12.042.
  • Guan, B., R. Zhan, H. Lin, and Z. Huang. 2015. Review of the state-of-the-art of exhaust particulate filter technology in internal combustion engines. Journal of Environmental Management 154:225–58. doi:10.1016/j.jenvman.2015.02.027.
  • Guttikunda, S., N. Quoc Tuan, P. Quynh Nhu, D. Hong Son, and L. Duc Cuong. 2008. Vision 2010: An integrated policy reform of air management wor Hanoi, Vietnam. Proceeding for the 5th Annual Air Quality Workshop for Asian countries, Bangkok, Thailand.
  • Han, L., S. Cai, M. Gao, J.-Y. Hasegawa, P. Wang, J. Zhang, L. Shi, and D. Zhang. 2019. Selective catalytic reduction of NOx with NH3 by using novel catalysts: State of the art and future prospects. Chemical Reviews 119 (19):10916–76. doi:10.1021/acs.chemrev.9b00202.
  • Kang, W., and B. Choi. 2016. Effect of copper precursor on simultaneous removal of PM and NO x of a 2-way SCR/CDPF. Chemical Engineering Science 141:175–83. doi:10.1016/j.ces.2015.11.007.
  • Kim, H., S. Kasipandi, J. Kim, S. Kang, J. Kim, J. Ryu, and J. Bae. 2020. Review Current catalyst Technology of Selective catalytic reduction (SCR) for NOx removal in South Korea. Catalysts 10 (1):52. doi:10.3390/catal10010052.
  • Kishida, M., K. Imamura, N. Takenaka, Y. Maeda, P. H. Viet, and H. Bandow. 2008. Concentrations of atmospheric polycyclic aromatic hydrocarbons in particulate matter and the gaseous phase at roadside sites in Hanoi, Vietnam. Bulletin of Environmental Contamination and Toxicology 81 (2):174–79. doi:10.1007/s00128-008-9450-5.
  • Leskovjan, M., P. Kočí, and T. Maunula. 2018. Simulation of diesel exhaust aftertreatment system DOC—pipe—SCR: The effects of pt loading, PtO x formation and pipe configuration on the deNO x performance. Chemical Engineering Science 189:179–90. doi:10.1016/j.ces.2018.05.031.
  • Mohankumar, S., and P. Senthilkumar. 2017. Particulate matter formation and its control methodologies for diesel engine: A comprehensive review. Renewable and Sustainable Energy Reviews 80:1227–38. doi:10.1016/j.rser.2017.05.133.
  • Patton, K., R. Nitschke, and J. Heywood. 1989. Development and evaluation of a friction model for Spark-ignition engines. SAE Technical Paper (890836). doi:10.4271/890836.
  • Shan, Y., D. Jinpeng, Y. Zhang, W. Shan, X. Shi, Y. Yunbo, R. Zhang, X. Meng, F.-S. Xiao, and H. Hong. 2021. Selective catalytic reduction of NOx with NH3: Opportunities and challenges of cu-based small-pore zeolites. National Science Review 8 (10):nwab010. doi:10.1093/nsr/nwab010.
  • Sluder, C., and R. Wagner 2006. An estimate of diesel high-efficiency clean combustion impacts on FTP-75 aftertreatment requirements. SAE Technical Paper (2006-01-3311). doi: 10.4271/2006-01-3311.
  • Woschni, G. 1967. A universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine. SAE Technical Paper (670931). doi:10.4271/670931.
  • Zhang, Z., R. Dong, G. Lan, T. Yuan, and D. Tan. 2023. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review. Environmental Science and Pollution Research 30 (14):39338–76. doi:10.1007/s11356-023-25579-4.
  • Zhang, Y. H., D. M. Lou, P. Q. Tan, and Z. Y. Hu. 2017. Effects of DOC+CDPF on emission characteristics of heavy-duty diesel vehicle. Huan Jing Ke Xue 38 (5):1828–34. doi:10.13227/j.hjkx.201610188.
  • Zhang, Y., D. Lou, P. Tan, Z. Hu, and L. Fang. 2023. Effect of catalyzed diesel particulate filter and its catalyst loading on emission characteristics of a non-road diesel engine. Journal of Environmental Sciences 126:794–805. doi:10.1016/j.jes.2021.12.028.
  • Zhang, Z., J. Tian, L. Jiangtao, C. Cao, S. Wang, L. Junshuai, W. Zheng, and D. Tan. 2022. The development of diesel oxidation catalysts and the effect of sulfur dioxide on catalysts of metal-based diesel oxidation catalysts: A review. Fuel Processing Technology 233:107317. doi:10.1016/j.fuproc.2022.107317.
  • Zhao, H., H. Li, Z. Pan, F. Feng, Y. Gu, J. Du, and Y. Zhao. 2020. Design of CeMnCu ternary mixed oxides as soot combustion catalysts based on optimized ce/mn and mn/cu ratios in binary mixed oxides. Applied Catalysis B: Environmental 268:118422. doi:10.1016/j.apcatb.2019.118422.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.