109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of CuO/water nanofluid as a coolant for liquid cold plate on electric vehicle battery cells

ORCID Icon, , &
Pages 2270-2283 | Received 10 Jul 2023, Accepted 09 Jan 2024, Published online: 23 Jan 2024

References

  • Agwu, D.; F. Opara; N. Chukwuchekwa; D. Dike; L. Uzoechi. 2017. Review of comparative battery energy storage system (BESS) for energy storage applications in tropical environment. Proceedings of the IEEE 3rd International Conference on Electro-Technology for National Development, Federal University of Technology, Owerri (FUTO), Nigeria.
  • Ahmadi, M. H., A. Mirlohi, M. A. Nazari, and R. Ghasempour. 2018. A review of thermal conductivity of various nanofluids. Journal of Molecular Liquids 265:181–88. doi:10.1016/j.molliq.2018.05.124.
  • Akpek, A. 2016. Effect of non-uniform temperature field in viscosity measurement. Journal of Vision 19 (2):291–99. doi:10.1007/s12650-015-0311-0.
  • Barbés, B., R. Páramo, E. Blanco, and C. Casanova. 2014. Thermal conductivity and specific heat capacity measurements of CuO nanofluids. Journal of Thermal Analysis and Calorimetry 115 (2):1883–91. doi:10.1007/s10973-013-3518-0.
  • Broadbent, G. H., D. Drozdzewski, and G. Metternicht. 2018. Electric vehicle adoption: An analysis of best practice and pitfalls for policy making from experiences of Europe and the US. Geography Compass 12 (2):e12358. doi:10.1111/gec3.12358.
  • Chein, R., and J. Chuang. 2007. Experimental microchannel heat sink performance studies using nanofluids. International Journal of Thermal Sciences 46 (1):57–66. doi:10.1016/j.ijthermalsci.2006.03.009.
  • Estellé, P., D. Cabaleiro, G. Żyła, L. Lugo, and S. M. S. Murshed. 2018. Current trends in surface tension and wetting behavior of nanofluids. Renewable and Sustainable Energy Reviews 94:931–44. doi:10.1016/j.rser.2018.07.006.
  • Ganapathy, H., A. Shooshtari, K. Choo, S. Dessiatoun, M. Alshehhi, and M. Ohadi. 2013. Volume of fluid-based numerical modeling of condensation heat transfer and fluid flow characteristics in microchannels. International Journal of Heat and Mass Transfer 65:62–72. doi:10.1016/j.ijheatmasstransfer.2013.05.044.
  • Garud, K. S., L. D. Tai, S.-G. Hwang, N.-H. Nguyen, and M.-Y. Lee. 2023. A review of advanced cooling strategies for battery thermal management systems in electric vehicles. Symmetry (Basel) 15 (7):1322. doi:10.3390/sym15071322.
  • Greco, A., D. Cao, X. Jiang, and H. Yang. 2014. A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes. Journal of Power Sources 257:344–55. doi:10.1016/j.jpowsour.2014.02.004.
  • Gungor, S., E. Cetkin, and S. Lorente. 2022. Thermal and electrical characterization of an electric vehicle battery cell, an experimental investigation. Applied Thermal Engineering 212:118530. doi:10.1016/j.applthermaleng.2022.118530.
  • Heris, S. Z., S. G. Etemad, and M. N. Esfahany. 2006. Experimental investigation of oxide nanofluids laminar flow convective heat transfer. International Communications in Heat and Mass Transfer 33 (4):529–35. doi:10.1016/j.icheatmasstransfer.2006.01.005.
  • Huo, Y., and Z. Rao. 2015. The numerical investigation of nanofluid based cylinder battery thermal management using lattice Boltzmann method. International Journal of Heat and Mass Transfer 91:374–84. doi:10.1016/j.ijheatmasstransfer.2015.07.128.
  • Lohith, N.; H. B. Bhaskar; S. Manu. 2018. Influence of various parameters on pressure drop during flow condensation in pipe using Taguchi approach. International Conference on Advances in Manufacturing, Materials and Energy Engineering (ICon MMEE 2018), Mangalore Institute Of Technology & Engineering, Badaga Mijar, Moodbidri, Karnataka, India, March 2–3. 376:12010.
  • Lu, L., X. Han, J. Li, J. Hua, and M. Ouyang. 2013. A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources 226:272–88. doi:10.1016/j.jpowsour.2012.10.060.
  • Lu, Z., X. Yu, L. Wei, Y. Qiu, L. Zhang, X. Meng, and L. Jin. 2018. Parametric study of forced air cooling strategy for lithium-ion battery pack with staggered arrangement. Applied Thermal Engineering 136:28–40. doi:10.1016/j.applthermaleng.2018.02.080.
  • Mishra, S. K., H. Chandra, and A. Arora. 2019. Effect of velocity and rheology of nanofluid on heat transfer of laminar vibrational flow through a pipe under constant heat flux. International Nano Letters 9 (3):245–56. doi:10.1007/s40089-019-0276-4.
  • Muhammad, N. M., N. A. C. Sidik, A. Saat, and B. Abdullahi. 2019. Effect of nanofluids on heat transfer and pressure drop characteristics of diverging-converging minichannel heat sink. CFD Letters 11:105–20. https://www.akademiabaru.com/submit/index.php/cfdl/article/view/3158.
  • Om, N. I., R. Zulkifli, and P. Gunnasegaran. 2018a. The influence of different types of nanofluid on thermal and fluid flow performance of liquid cold plate. International Journal of Engineering and Technology 7 (4.35):148–52. doi:10.14419/ijet.v7i4.35.22346.
  • Om, N. I., R. Zulkifli, and P. Gunnasegaran. 2018b. Influence of the oblique fin arrangement on the fluid flow and thermal performance of liquid cold plate. Case Studies in Thermal Engineering 12:717–27. doi:10.1016/j.csite.2018.09.008.
  • Panduro, E. A. C., F. Finotti, G. Largiller, and K. Y. Lervåg. 2022. A review of the use of nanofluids as heat-transfer fluids in parabolic-trough collectors. Applied Thermal Engineering 211:118346. doi:10.1016/j.applthermaleng.2022.118346.
  • Patil, M. S.; J. H. Seo; Y. M. Bang; D. W. Kim; G. Ekanayake; G. Singh; H. M. Kim; Y. H. Choi; M. Y. Lee. 2016. A novel design for lithium ion battery cooling using mineral oil. Proceedings of the Proceedings of the 3rd International Mega-Conference on Green and Smart Technology (GST 2016), Jeju National University, Jeju island, Korea; p. 21–23.
  • Patil, M. S., J.-H. Seo, S. Panchal, S.-W. Jee, and M.-Y. Lee. 2020. Investigation on thermal performance of water-cooled Li-ion pouch cell and pack at high discharge rate with U-turn type microchannel cold plate. International Journal of Heat and Mass Transfer 155:119728. doi:10.1016/j.ijheatmasstransfer.2020.119728.
  • Rachedi, K., and A. I. N. Korti. 2017. Computational investigation of thermal interaction phenomena between two adjacent spheres filled with different phase change materials (PCMs). International Journal of Air-Conditioning and Refrigeration 25 (4):1750033. doi:10.1142/S201013251750033X.
  • Ram, P., V. K. Joshi, K. Sharma, M. Walia, and N. Yadav. 2016. Variable viscosity effects on time dependent magnetic nanofluid flow past a stretchable rotating plate. Open Physics 14 (1):651–58. doi:10.1515/phys-2016-0072.
  • Seo, J.-H.; M. S. Patil; D.-W. Kim; Y.-M. Bang; M.-Y. Lee. 2017. Numerical study on the cooling performances of various cooling methods for laminated type battery. Proceedings of the Asian Conference on Thermal Sciences 2017, 1st ACTS, Jeju Island, Korea, March 26–30. Jeju, Korea: ICC Jeju.
  • Shdaifat, A., M. Yacoub, R. Zulkifli, K. Sopian, and A. A. Salih. 2020. Thermal and hydraulic performance of CuO/Water nanofluids: A review. Micromachines 11 (4):416. doi:10.3390/mi11040416.
  • Sheng, L., L. Su, H. Zhang, K. Li, Y. Fang, W. Ye, and Y. Fang. 2019. Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger. International Journal of Heat and Mass Transfer 141:658–68. doi:10.1016/j.ijheatmasstransfer.2019.07.033.
  • Sokhal, G. S. 2021. Heat transfer performance of water based nanofluids: A review. Materials Today: Proceedings 37:3652–55. doi:10.1016/j.matpr.2020.09.787.
  • Sundar, L. S., and K. Sharma. 2008. V Experimental determination of thermal conductivity of fluid containing oxide nanoparticles. International Journal of Dynamics Fluids 4:57–69. https://www.researchgate.net/profile/K-Sharma-2/publication/237670719_Experimental_Determination_of_Thermal_Conductivity_of_Fluid_Containing_Oxide_Nanoparticles/links/59d71bf5a6fdcc52acab8a47/Experimental-Determination-of-Thermal-Conductivity-of-Fluid-Containing-Oxide-Nanoparticles.pdf.
  • Tousi, M., A. Sarchami, M. Kiani, M. Najafi, and E. Houshfar. 2021. Numerical study of novel liquid-cooled thermal management system for cylindrical Li-ion battery packs under high discharge rate based on AgO nanofluid and copper sheath. Journal of Energy Storage 41:102910. doi:10.1016/j.est.2021.102910.
  • Xu, Y., Y. Xue, H. Qi, and W. Cai. 2021. An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes. Renewable and Sustainable Energy Reviews 144:110995. doi:10.1016/j.rser.2021.110995.
  • Yacoub Al Shdaifat, M., R. Zulkifli, K. Sopian, and A. Adel Salih. 2023. Basics, properties, and thermal issues of EV battery and battery thermal management systems: Comprehensive review. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 237 (2–3):295–311. doi:10.1177/09544070221079195.
  • Youssef, R., T. Kalogiannis, H. Behi, A. Pirooz, J. Van Mierlo, and M. Berecibar. 2023. A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles. Energy Reports 10:1041–68. doi:10.1016/j.egyr.2023.07.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.