57
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Improving solar power forecast from meteorological parameters with regression models

& ORCID Icon
Pages 2405-2420 | Received 25 Sep 2023, Accepted 15 Jan 2024, Published online: 23 Jan 2024

References

  • Abdel-Nasser, M., and K. Mahmoud. 2019. Accurate photovoltaic power forecasting models using deep LSTM-RNN. Neural Computing and Applications 31 (7):2727–2740. doi:10.1007/s00521-017-3225-z.
  • Alkhayat, G., S. H. Hasan, and R. Mehmood. 2022. SENERGY: A novel deep learning-based auto-selective approach and tool for solar energy forecasting. Energies 15 (18):6659. doi:10.3390/en15186659.
  • Aslam, S., H. Herodotou, S. M. Mohsin, N. Javaid, N. Ashraf, and S. Aslam. 2021. A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids. Renewable and Sustainable Energy Reviews 144:110992. doi:10.1016/j.rser.2021.110992.
  • Atique, S., S. Noureen, V. Roy, S. Bayne, and J. Macfie. 2020, April. Time series forecasting of total daily solar energy generation: A comparative analysis between ARIMA and machine learning techniques. In 2020 IEEE Green Technologies Conference (GreenTech), Oklahoma City, OK, USA, 175–80.
  • Chahboun, S., and M. Maaroufi. 2021b. Performance comparison of support vector regression, random forest, and multiple linear regression to forecast the power of photovoltaic panels. 2021 9th International Renewable and Sustainable Energy Conference (IRSEC), Morocco, 1–4. IEEE.
  • Chen, C. R., and U. Three Kartini. 2017. K-nearest neighbor neural network models for very short-term global solar irradiance forecasting based on meteorological data. Energies 10 (2):186. doi:10.3390/en10020186.
  • Das, U. K., K. S. Tey, M. Seyedmahmoudian, S. Mekhilef, M. Y. I. Idris, W. Van Deventer, B. Horan, and A. Stojcevski. 2018. Forecasting of photovoltaic power generation and model optimization: A review. Renewable and Sustainable Energy Reviews 81:912–28. doi:10.1016/j.rser.2017.08.017.
  • Eroğlu, H., E. Cuce, P. M. Cuce, F. Gul, and A. Iskenderoğlu. 2021. Harmonic problems in renewable and sustainable energy systems: A comprehensive review. Sustainable Energy Technologies and Assessments 48:101566. doi:10.1016/j.seta.2021.101566.
  • Ertekin, S. 2020. Solar power prediction with an hour-based ensemble machine learning method. Hittite Journal of Science and Engineering 7 (1):35–40. doi:10.17350/HJSE19030000169.
  • Eseye, A. T., J. Zhang, and D. Zheng. 2018. Short-term photovoltaic solar power forecasting using a hybrid wavelet-PSO-SVM model based on SCADA and meteorological information. Renewable Energy 118:357–367. doi:10.1016/j.renene.2017.11.011.
  • Harrou, F., F. Kadri, and Y. Sun. 2020. Forecasting of photovoltaic solar power production using LSTM approach. Advanced Statistical Modeling, Forecasting, and Fault Detection in Renewable Energy Systems 3.
  • Huertas Tato, J., and M. Centeno Brito. 2018. Using smart persistence and random forests to predict photovoltaic energy production. Energies 12 (1):100. doi:10.3390/en12010100.
  • Jiang, Y., L. Zheng, and X. Ding. 2021. Ultra-short-term prediction of photovoltaic output based on an LSTM-ARMA combined model driven by EEMD. Journal of Renewable and Sustainable Energy 13 (4):046103. doi:10.1063/5.0056980.
  • Kotsiantis, S. B. 2013. Decision trees: A recent overview. Artificial Intelligence Review 39 (4):261–283. doi:10.1007/s10462-011-9272-4.
  • Kumar, R. 2013. Decision tree for the weather forecasting. International Journal of Computer Applications 76 (2):31–34. doi:10.5120/13220-0620.
  • Lim, S. C., J. H. Huh, S. H. Hong, C. Y. Park, and J. C. Kim. 2022. Solar power forecasting using CNN-LSTM hybrid model. Energies 15 (21):8233. doi:10.3390/en15218233.
  • Lin, F., Y. Zhang, and J. Wang. 2023. Recent advances in intra-hour solar forecasting: A review of ground-based sky image methods. International Journal of Forecasting 39 (1):244–265. doi:10.1016/j.ijforecast.2021.11.002.
  • Li, L. L., S. Y. Wen, M. L. Tseng, and C. S. Wang. 2019. Renewable energy prediction: A novel short-term prediction model of photovoltaic output power. Journal of Cleaner Production 228:359–375. doi:10.1016/j.jclepro.2019.04.331.
  • Li, G., S. Xie, B. Wang, J. Xin, Y. Li, and S. Du. 2020. Photovoltaic power forecasting with a hybrid deep learning approach. Institute of Electrical and Electronics Engineers Access 8:175871–175880. doi:10.1109/ACCESS.2020.3025860.
  • Li, P., K. Zhou, and S. Yang. 2018. Photovoltaic power forecasting: Models and methods. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, China, 1–6.
  • Mehmood, F., M. U. Ghani, M. N. Asim, R. Shahzadi, A. Mehmood, and W. Mahmood. 2021. MPF-Net: A computational multi-regional solar power forecasting framework. Renewable and Sustainable Energy Reviews 151:111559. doi:10.1016/j.rser.2021.111559.
  • Mishra, M., P. B. Dash, J. Nayak, B. Naik, and S. K. Swain. 2020. Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement 166:108250. doi:10.1016/j.measurement.2020.108250.
  • Munawar, U., and Z. Wang. 2020. A framework of using machine learning approaches for short-term solar power forecasting. Journal of Electrical Engineering and Technology 15 (2):561–569. doi:10.1007/s42835-020-00346-4.
  • Nie, Y., Y. Sun, Y. Chen, R. Orsini, and A. Brandt. 2020. PV power output prediction from sky images using convolutional neural network: The comparison of sky-condition-specific sub-models and an end-to-end model. Journal of Renewable and Sustainable Energy 12 (4):046101. doi:10.1063/5.0014016.
  • Panamtash, H., Q. Zhou, T. Hong, Z. Qu, and K. O. Davis. 2020. A copula-based Bayesian method for probabilistic solar power forecasting. Solar Energy 196:336–345. doi:10.1016/j.solener.2019.11.079.
  • Pedro, H. T., and C. F. Coimbra. 2012. Assessment of forecasting techniques for solar power production with no exogenous inputs. Solar Energy 86 (7):2017–28. doi:10.1016/j.solener.2012.04.004.
  • Persson, C., P. Bacher, T. Shiga, and H. Madsen. 2017. Multi-site solar power forecasting using gradient boosted regression trees. Solar Energy 150:423–436. doi:10.1016/j.solener.2017.04.066.
  • Pombo, D. V., M. J. Rincón, P. Bacher, H. W. Bindner, S. V. Spataru, and P. E. Sørensen. 2022. Assessing stacked physics-informed machine learning models for co-located wind–solar power forecasting. Sustainable Energy, Grids and Networks 32:100943. doi:10.1016/j.segan.2022.100943.
  • Rafati, A., M. Joorabian, E. Mashhour, and H. R. Shaker. 2021. High dimensional very short-term solar power forecasting based on a data-driven heuristic method. Energy 219:119647. doi:10.1016/j.energy.2020.119647.
  • Rai, A., A. Shrivastava, and K. C. Jana. 2022. A robust auto encoder-gated recurrent unit (AE-GRU) based deep learning approach for short-term solar power forecasting. Optik 252:168515. doi:10.1016/j.ijleo.2021.168515.
  • Visser, L., T. AlSkaif, and W. van Sark. 2022. Operational day-ahead solar power forecasting for aggregated PV systems with a varying spatial distribution. Renewable Energy 183:267–282. doi:10.1016/j.renene.2021.10.102.
  • Wang, Y., Y. Fu, and H. Xue. 2020. Improved prediction method of PV output power based on optimized chaotic phase space reconstruction. IET Renewable Power Generation 14 (11):1831–40. doi:10.1049/iet-rpg.2019.0809.
  • Wang, K., X. Qi, and H. Liu. 2019. Photovoltaic power forecasting based LSTM-Convolutional network. Energy 189:116225. doi:10.1016/j.energy.2019.116225.
  • Wang, Z., Y. Wang, R. Zeng, R. S. Srinivasan, and S. Ahrentzen. 2018. Random forest based hourly building energy prediction. Energy & Buildings 171:11–25. doi:10.1016/j.enbuild.2018.04.008.
  • Zazoum, B. 2022. Solar photovoltaic power prediction using different machine learning methods. Energy Reports 8:19–25. doi:10.1016/j.egyr.2021.11.183.
  • Zhang, J., Z. Tan, and Y. Wei. 2020. An adaptive hybrid model for day-ahead photovoltaic output power prediction. Journal of Cleaner Production 244:118858. doi:10.1016/j.jclepro.2019.118858.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.