156
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Performance optimization of photovoltaic system under real climatic conditions using a novel MPPT approach

ORCID Icon, , ORCID Icon, , &
Pages 2474-2492 | Received 02 Nov 2023, Accepted 18 Jan 2024, Published online: 30 Jan 2024

References

  • Abouobaida, H., Y. Mchaouar, Y. Abouelmahjoub, H. Mahmoudi, A. Abbou, and M. Jamil. 2023. Performance optimization of the INC-COND fuzzy MPPT based on a variable step for photovoltaic systems. Optik (Stuttg) 278 (January):170657. doi:10.1016/j.ijleo.2023.170657.
  • Ahmed, J., and Z. Salam. 2015. An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency. Applied Energy 150:97–108. doi:10.1016/j.apenergy.2015.04.006.
  • Aldair, A. A., A. A. Obed, and A. F. Halihal. 2018. Design and implementation of ANFIS-reference model controller based MPPT using FPGA for photovoltaic system. Renewable and Sustainable Energy Reviews 82 (July):2202–17. doi:10.1016/j.rser.2017.08.071.
  • Ali, A. I. M., and H. R. A. Mohamed. 2022. Improved P&O MPPT algorithm with efficient open-circuit voltage estimation for two-stage grid-integrated PV system under realistic solar radiation. International Journal of Electrical Power & Energy Systems 137 (October):107805. doi:10.1016/j.ijepes.2021.107805.
  • Arsalan, M., R. Iftikhar, I. Ahmad, A. Hasan, K. Sabahat, and A. Javeria. 2018. MPPT for photovoltaic system using nonlinear backstepping controller with integral action. Solar Energy 170 (April):192–200. doi:10.1016/j.solener.2018.04.061.
  • Balachandran, K., and K. Ramasamy. 2022. “Maximum power point tracking based on self-adaptive neural network combined with incremental conductance,” energy sources, part a recover. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (3):7895–913. doi:10.1080/15567036.2022.2115168.
  • Belhimer, S., M. Haddadi, and A. Mellit. 2018. A novel hybrid boost converter with extended duty cycles range for tracking the maximum power point in photovoltaic system applications. International Journal of Hydrogen Energy 43 (14):6887–98. doi:10.1016/j.ijhydene.2018.02.136.
  • Bisht, R., and A. Sikander. 2022. An improved method based on fuzzy logic with beta parameter for PV MPPT system. Optik (Stuttg) 259 (April):168939. doi:10.1016/j.ijleo.2022.168939.
  • Bouarroudj, N., B. Benlahbib, M. Sedraoui, V. Feliu-Batlle, M. Bechouat, D. Boukhetala, and F. Boudjema. 2022. A new tuning rule for stabilized integrator controller to enhance the indirect control of incremental conductance MPPT algorithm: Simulation and practical implementation. Optik (Stuttg) 268 (July):169728. doi:10.1016/j.ijleo.2022.169728.
  • Chellakhi, A., S. El Beid, and Y. Abouelmahjoub. 2022. An innovative fast-converging speed MPPT approach without oscillation for temperature varying in photovoltaic systems applications. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 44 (2):2674–96. doi:10.1080/15567036.2022.2058121.
  • Cikan, M., and K. Dogansahin. 2023. A comprehensive evaluation of up-to-date optimization algorithms on MPPT application for photovoltaic systems. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (4):10381–407. doi:10.1080/15567036.2023.2245771.
  • El Masry, M. Z., A. Mohammed, F. Amer, and R. Mubarak. 2023. New hybrid MPPT technique including artificial intelligence and traditional techniques for extracting the global maximum power from partially shaded PV systems. Sustainability 15 (14):10884. doi:10.3390/su151410884.
  • Gilberto Lopes Filho, R. A. P. F., F. H. T. Vieira, and F. H. T. Vieira. 2021. Maximum power point tracking for photovoltaic panels using model predictive control and incremental conductance. Electric Power Components & Systems 49 (4–5):345–60. doi:10.1080/15325008.2021.1970057.
  • Harrison, A., N. H. Alombah, J. de Dieu Nguimfack Ndongmo, and A. Álvarez-Gallegos. 2023. A new hybrid MPPT based on incremental conductance-integral backstepping controller applied to a PV system under fast-changing operating conditions. International Journal of Photoenergy 2023:1–17. doi:10.1155/2023/9931481.
  • Hassan, A., O. Bass, and M. A. S. Masoum. 2023. An improved genetic algorithm based fractional open circuit voltage MPPT for solar PV systems. Energy Reports 9:1535–48. doi:10.1016/j.egyr.2022.12.088.
  • Ibrahim, A. W., M. B. Shafik, M. Ding, M. A. Sarhan, Z. Fang, A. G. Alareqi, T. Almoqri, and A. M. Al-Rassas. 2020. PV maximum power-point tracking using modified particle swarm optimization under partial shading conditions. Chinese Journal of Electrical Engineering 6 (4):106–21. doi:10.23919/CJEE.2020.000035.
  • Iftikhar, R., I. Ahmad, M. Arsalan, N. Naz, N. Ali, and H. Armghan. 2018. MPPT for photovoltaic system using nonlinear controller. International Journal of Photoenergy 2018:1–11. doi:10.1155/2018/6979723.
  • Jately, V., B. Azzopardi, J. Joshi, B. Venkateswaran, V. A. Sharma, and S. Arora. 2021. Experimental analysis of hill-climbing MPPT algorithms under low irradiance levels. Renewable and Sustainable Energy Reviews 150:111467. doi:10.1016/j.rser.2021.111467.
  • Joisher, M., D. Singh, S. Taheri, D. R. Espinoza-Trejo, E. Pouresmaeil, and H. Taheri. 2020. A hybrid evolutionary-based MPPT for photovoltaic systems under partial shading conditions. Institute of Electrical and Electronics Engineers Access 8:38481–92. doi:10.1109/ACCESS.2020.2975742.
  • Khan, I., and S. Khan. 2021. Thermal imaging based maximum power point tracking for solar modules in variable ambient temperature. SN Applied Sciences 3 (5). doi: 10.1007/s42452-021-04529-0.
  • Kumar, G. G. S., and S. Titus. 2023. Hybrid artificial rabbit optimization and perturb\& observe MPPT for grid-connected PV system. Electric Power Components & Systems 1–22. doi:10.1080/15325008.2023.2249885.
  • Manna, S., A. K. Akella, and D. K. Singh. 2023. Implementation of a novel robust model reference adaptive controller-based MPPT for stand-alone and grid-connected photovoltaic system. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (1):1321–45. doi:10.1080/15567036.2023.2178550.
  • Messalti, S., A. Harrag, and A. Loukriz. 2017. A new variable step size neural networks MPPT controller: Review, simulation and hardware implementation. Renewable and Sustainable Energy Reviews 68:221–33. doi:10.1016/j.rser.2016.09.131.
  • Mohammad Chamanpira Mehrdad Ghahremani, S. D. M. K. A. R., and K. Wakil. 2021. A novel MPPT technique to increase accuracy in photovoltaic systems under variable atmospheric conditions using fuzzy gain scheduling. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 43 (22):2960–82. doi:10.1080/15567036.2019.1676325.
  • Mohammadinodoushan, M., R. Abbassi, H. Jerbi, F. Waly Ahmed, H. Abdalqadirkh Ahmed, and A. Rezvani. 2021. A new MPPT design using variable step size perturb and observe method for PV system under partially shaded conditions by modified shuffled frog leaping algorithm- SMC controller. Sustainable Energy Technologies and Assessments 45 (October):101056. doi:10.1016/j.seta.2021.101056.
  • Muhammad Abu Bakar Siddique Adeel Asad, R. M. A. A. U. R. M. T. S., and I. Ullah. 2023. Implementation of incremental conductance MPPT algorithm with integral regulator by using boost converter in grid-connected PV array. IETE Journal of Research 69 (6):3822–35. doi:10.1080/03772063.2021.1920481.
  • Naghmash, H. A., A. Ahmad, I. Armghan, M. Khan, and S. Arsalan. 2018. Backstepping based non-linear control for maximum power point tracking in photovoltaic system. Solar Energy 159 (October):134–41. doi:10.1016/j.solener.2017.10.062.
  • Ozdemir, S., N. Altin, and I. Sefa. 2017. Fuzzy logic based MPPT controller for high conversion ratio quadratic boost converter. International Journal of Hydrogen Energy 42 (28):17748–59. doi:10.1016/j.ijhydene.2017.02.191.
  • Priyadarshi, N., S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar. 2020. An experimental estimation of hybrid ANFIS-PSO-Based MPPT for PV grid integration under fluctuating sun irradiance. IEEE Systems Journal 14 (1):1218–29. doi:10.1109/JSYST.2019.2949083.
  • Qureshi, M. A., F. Torelli, S. Musumeci, A. Reatti, A. Mazza, and G. Chicco. 2023. A novel adaptive control approach for maximum power-point tracking in photovoltaic systems. Energies 16 (6):1–18. doi:10.3390/en16062782.
  • Ratnakar Babu Bollipo, S. M., and P. K. Bonthagorla. 2023. Application of radial basis neural network in MPPT technique for stand-alone PV system under partial shading conditions. IETE Journal of Research 69 (9):6409–30. doi:10.1080/03772063.2021.1988874.
  • Refaat, A., A. E. Khalifa, M. M. Elsakka, Y. Elhenawy, A. Kalas, and M. H. Elfar. 2023. A novel metaheuristic MPPT technique based on enhanced autonomous group particle swarm optimization algorithm to track the GMPP under partial shading conditions - experimental validation. Energy Conversion and Management 287 (April):117124. doi:10.1016/j.enconman.2023.117124.
  • Saad Motahhir. 2021. Contribution to the optimization of energy withdrawn from a PV panel using an embedded system. SSRN Electronic Journal (November). doi:10.2139/ssrn.3804081.
  • Sahoo, J., S. Samanta, and S. Bhattacharyya. 2020. Adaptive PID Controller with P&O MPPT algorithm for photovoltaic system. IETE Journal of Research 66 (4):442–53. doi:10.1080/03772063.2018.1497552.
  • Singh, O., A. Ghosh, and A. K. Ray. 2023. Estimation of parameters of one-diode and two-diode photovoltaic models: A chaotic gravitational search algorithm based approach. Energy Sources Part A: Recovery, Utilization, and Environmental Effects 45 (2):5938–56. doi:10.1080/15567036.2023.2211032.
  • Villalva, M. G., J. R. Gazoli, and E. R. Filho. 2009. Comprehensive approach to modeling and simulation of photovoltaic arrays. IEEE Transactions on Power Electronics 24 (5):1198–208. doi:10.1109/TPEL.2009.2013862.
  • Wang, Y., Y. Yang, G. Fang, B. Zhang, H. Wen, H. Tang, L. Fu, and X. Chen. 2018. An advanced maximum power point tracking method for photovoltaic systems by using variable universe fuzzy logic control considering temperature variability. Electronics 7 (12):355. doi:10.3390/electronics7120355.
  • Yilmaz, M., R. Celikel, and A. Gundogdu. 2023a. Enhanced photovoltaic systems performance: Anti-Windup PI controller in ANN-Based ARV MPPT method. Institute of Electrical and Electronics Engineers Access 11 (August):90498–509. doi:10.1109/ACCESS.2023.3290316.
  • Yilmaz, M., R. Celikel, and A. Gundogdu. 2023b. Enhanced photovoltaic systems performance: Anti-Windup PI controller in ANN-Based ARV MPPT method. Institute of Electrical and Electronics Engineers Access 11 (June):90498–509. doi:10.1109/ACCESS.2023.3290316.
  • Zhang, N., D. Sutanto, K. M. Muttaqi, B. Zhang, and D. Qiu. 2015. High-voltage-gain quadratic boost converter with voltage multiplier. IET Power Electronics 8 (12):2511–19. doi:10.1049/iet-pel.2014.0767.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.