43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Numerical investigation of premixed combustion of producer gas with hydrogen injection in a cyclonical chamber

ORCID Icon
Pages 3644-3662 | Received 04 Jan 2024, Accepted 21 Feb 2024, Published online: 11 Mar 2024

References

  • Akal, D., S. Öztuna, and M. Kemalettin Büyükakın. 2020. A review of hydrogen usage in internal combustion engines (gasoline-LPG-diesel) from combustion performance aspect. International Journal of Hydrogen Energy 45 (60):35257–68. doi:10.1016/j.ijhydene.2020.02.001.
  • Amaduzzi, R., M. Ferrarotti, and A. Parente. 2021. Strategies for hydrogen-enriched methane flameless combustion in a quasi-industrial furnace. Frontiers in Energy Research 8 (January):1–10. doi:10.3389/fenrg.2020.590300.
  • Beita, J., M. Talibi, S. Sadasivuni, and R. Balachandran. 2021. Thermoacoustic instability considerations for high hydrogen combustion in lean premixed gas turbine combustors: A review. Hydrogen 2 (1):33–57. doi:10.3390/hydrogen2010003.
  • Benaissa, S., B. Adouane, S. M. Ali, S. S. Rashwan, and Z. Aouachria. 2022. Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors. Thermal Science and Engineering Progress Journal 27 (December 2021):101178. Elsevier Ltd doi:10.1016/j.tsep.2021.101178.
  • Blocquet, M., C. Schoemaecker, D. Amedro, O. Herbinet, F. Battin-Leclerc, and C. Fittschen. 2013. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by fluorescence assay by gas expansion technique. Proceedings of the National Academy of Sciences of the United States of America 110 (50):20014–17. doi:10.1073/pnas.1314968110.
  • Böhlenius, H., M. Öhman, F. Granberg, and P. Ove Persson. 2023. Biomass production and fuel characteristics from long rotation poplar plantations. Biomass and Bioenergy 178:106940. doi:10.1016/j.biombioe.2023.106940.
  • Chanphavong, L., K. Al-Attab, and Z. A. Zainal. 2019. Flameless combustion characteristics of producer gas premixed charge in a cyclone combustor. Flow Turbulence & Combustion 103 (3):731–50. doi:10.1007/s10494-019-00043-x.
  • Chanphavong, L., and Z. A. Zainal. 2018. Characterization and challenge of development of producer gas fuel combustor: A review. Journal of the Energy Institute 92 (5):1577–90. doi:10.1016/j.joei.2018.07.016.
  • Chen, Y., J. Wang, X. Zhang, and C. Li. 2020. Experimental and numerical study of the effect of CO2 replacing part of N2 present in air on CH4 premixed flame characteristics using a reduced mechanism. American Chemical Society Omega 5:30130–38. doi:10.1021/acsomega.0c04537.
  • Danon, B., W. de Jong, and D. J. E. M. Roekaerts. 2010. Experimental and numerical investigation of a FLOX combustor firing low calorific value gases. Combustion Science and Technology 182 (9):1261–78. doi:10.1080/00102201003639284.
  • El-Ghafour, S. A. A., A. H. E. El-Dein, and A. A. R. Aref. 2010. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame. International Journal of Hydrogen Energy 35 (6):2556–65. Elsevier Ltd. doi:10.1016/j.ijhydene.2009.12.049.
  • Fluent, ANSYS. ANSYS fluent 12.0 user’s guide. ANSYS, Inc. https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/main_pre.htm.
  • He, Y., M. Liang, S. Liao, X. Jian, Y. Shao, and Z. Jin. 2020. Chemical effects of hydrogen addition on low-temperature oxidation of premixed laminar methane/air flames. Fuel 280 (May):118600. doi:10.1016/j.fuel.2020.118600.
  • Hosseini, S. E., and M. Abdul Wahid. 2014. Development of biogas combustion in combined heat and power generation. Renewable and Sustainable Energy Reviews 40 (December):868–75. Pergamon doi:10.1016/J.RSER.2014.07.204.
  • Ilbas, M. 2005. The effect of thermal radiation and radiation models on hydrogen-hydrocarbon combustion modelling. International Journal of Hydrogen Energy 30 (10):1113–26. doi:10.1016/j.ijhydene.2004.10.009.
  • Ilbas, M., and S. Karyeyen. 2016. Numerical modelling of effects of hydrogen supply on combustion behaviours of low calorific value coal gases. International Journal of Global Warming 10 (1–3):16–31. doi:10.1504/IJGW.2016.077898.
  • Joshi, J. B., and A. K. Nayak. 2019. Computational fluid dynamics. In Advances of computational fluid dynamics in nuclear reactor design and safety assessment. Elsevier Ltd. doi:10.1016/B978-0-08-102337-2.00002-X.
  • Karyeyen, S., and M. Ilbas. 2016. Turbulent diffusion flames of coal derived-hydrogen supplied low calorific value syngas mixtures in a new type of burner: An experimental study. International Journal of Hydrogen Energy: 1–13. Elsevier Ltd. doi:10.1016/j.ijhydene.2016.09.063.
  • Karyeyen, S., and M. Ilbas. 2018. Experimental and numerical analysis of turbulent premixed combustion of low calori Fi c value coal gases in a generated premixed burner. Fuel 220 (February):586–98. Elsevier doi:10.1016/j.fuel.2018.02.052.
  • Khidr, K. I., Y. A. Eldrainy, and M. M. EL-Kassaby. 2017. Towards lower gas turbine emissions: Flameless distributed combustion. Renewable and Sustainable Energy Reviews 67:1237–66. Elsevier. doi:10.1016/j.rser.2016.09.032.
  • Li, P., J. Mi, B. B. Dally, R. A. Craig, and F. Wang. 2011. Premixed Moderate or Intense Low-Oxygen Dilution (MILD) Combustion from a single jet burner in a laboratory-scale furnace. Energy and Fuels 25 (7):2782–93. doi:10.1021/ef200208d.
  • Messaoudani, Z. L., M. Diana Hamid, C. Rosmani Che Hassan, and W. U. Yajue. 2020. The effects of hydrogen addition on the chemical kinetics of hydrogen-hydrocarbon flames: A computational study. South African Journal of Chemical Engineering 33 March:1–28. ( Elsevier) doi:10.1016/j.sajce.2020.03.003.
  • Miao, J., C. W. Leung, C. S. Cheung, Z. H. Huang, and H. S. Zhen. 2016. Effect of hydrogen addition on overall pollutant emissions of inverse diffusion flame. Energy 104:284–94. Elsevier Ltd. doi:10.1016/j.energy.2016.03.114.
  • Nardo, A. D., and G. Calchetti. 2017. New-concept gas turbine burner simulation in moderate Intense low-oxygen combustion regime. Journal of Applied Fluid Mechanics 10 (6):1527–36. doi:10.29252/jafm.73.245.27422.
  • Noor, M. M., P. W. Andrew, and T. Yusaf. 2014. Air fuel ratio study for mixture of biogas and hydrogen on mild combustion. International Journal of Automotive and Mechanical Engineering 10 (1):2144–54. doi:10.15282/ijame.10.2014.29.0180.
  • Odeh, A., and M. C. Paul. 2023. Effects of hydrogen enrichment on the heat generation and emission of natural gas turbulent premixed flame. International Journal of Hydrogen Energy 49:1176–91. doi:10.1016/j.ijhydene.2023.10.140.
  • Petkov, T., T. N. Veziroǧlu, and J. W. Sheffield. 1989. An outlook of Hydrogen as an automotive fuel. International Journal of Hydrogen Energy 14 (7):449–74. doi:10.1016/0360-3199(89)90031-1.
  • Sabrina, B., B. Adouane, S. M. Ali, and A. Mohammad. 2021. Effect of hydrogen addition on the combustion characteristics of premixed biogas/hydrogen-air mixtures. International Journal of Hydrogen Energy 46 (35):18661–77. doi:10.1016/j.ijhydene.2021.02.225.
  • Sánchez, A. L., and F. A. Williams. 2014. Recent advances in understanding of flammability characteristics of hydrogen. Progress in Energy and Combustion Science 41 (1):1–55. Elsevier Ltd. doi:10.1016/j.pecs.2013.10.002.
  • Sankaran, R., E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law. 2007. Structure of a spatially developing turbulent lean methane–air bunsen flame. Proceedings of the Combustion Institute 31 (1):1291–98. Elsevier doi:10.1016/J.PROCI.2006.08.025.
  • Sanusi, Y. S., E. M. A. Mokheimer, M. Raghib Shakeel, Z. Abubakar, and M. A. Habib. 2017. Oxy-combustion of hydrogen-enriched methane: Experimental measurements and analysis. Energy and Fuels 31 (2):2007–16. doi:10.1021/acs.energyfuels.6b03118.
  • Sethuraman, S. 2010. Performance of a pilot scale biomass gasification and producer gas combustion system using feedstock with controlled nitrogen content. Master of Science Thesis. Iowa State University of Science and Technology. doi:10.31274/etd-180810-418.
  • Sethuraman, S., C. Van Huynh, and S. Charng Kong. 2011. Producer gas composition and NOx emissions from a pilot-scale biomass gasification and combustion system using feedstock with controlled nitrogen content. Energy and Fuels 25 (2):813–22. doi:10.1021/ef101352j.
  • Shan, S., S. Jia, H. Wu, Q. Zhang, H. Hui, and Z. Zhou. 2023. New solar-biomass assisted thermophotovoltaic system and parametrical analysis. Green Energy and Resources 1 (2):100019. The Authors: 100019 doi:10.1016/j.gerr.2023.100019.
  • Tan, K. C., Y. S. Chua, T. He, and P. Chen. 2023. Strategies of thermodynamic alternation on organic hydrogen carriers for hydrogen storage application: A review. Green Energy and Resources 1 (2):100020. The Author(s): 100020 doi:10.1016/j.gerr.2023.100020.
  • Tang, C. L., Z. H. Huang, and C. K. Law. 2011. Determination, correlation, and mechanistic interpretation of effects of hydrogen addition on laminar flame speeds of hydrocarbon-air mixtures. Proceedings of the Combustion Institute 33 (1):921–28. Elsevier Inc. doi:10.1016/j.proci.2010.05.039.
  • Westbrook, C. K. 2000. Chemical kinetics of hydrocarbon ignition in practical combustion systems. Proceedings of the Combustion Institute 28 (2):1563–77. doi:10.1016/s0082-0784(00)80554-8.
  • Wilson, W. E., and R. M. Fristrom. 1963. Radicals in flames. APL Technical Digest 10–15.
  • Wu, L., N. Kobayashi, Z. Li, H. Huang, and J. Li. 2015. Emission and heat transfer characteristics of methane-hydrogen hybrid fuel laminar diffusion flame. International Journal of Hydrogen Energy 40 (30):9579–89. Elsevier Ltd. doi:10.1016/j.ijhydene.2015.05.096.
  • Yangaz, M. U., M. R. Özdemir, and R. Şener. 2020. Combustion performance of hydrogen-enriched fuels in a premixed burner. Environmental Technology (United Kingdom) 41 (1):2–13. Taylor & Francis doi:10.1080/09593330.2019.1656676.
  • Yilmaz, I., M. Taştan, M. Ilbaş, and C. Tarhan. 2013. Effect of turbulence and radiation models on combustion characteristics in propane-hydrogen diffusion flames. Energy Conversion and Management 72:179–86. doi:10.1016/j.enconman.2012.07.031.
  • Zeng, Q., M. Zhao, and Y. Yuan. 2022. Hydrogen-rich fuel combustion characteristics of a counter dual-swirl combustor at fixed power. Energy Reports 8:91–100. Elsevier Ltd. doi:10.1016/j.egyr.2021.11.043.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.