47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel approach to sandstorm-resilient solar tracking system for optimal energy generation

ORCID Icon &
Pages 4029-4050 | Received 05 Jul 2023, Accepted 01 Mar 2024, Published online: 13 Mar 2024

References

  • Abedelhak, M., B. Nourredine, C. Yolanda, and D. Alicia. 2013. Effect of the sandstorms on the solar panels.
  • Adeleke, B. 2016. Experimental and finite element analysis of wind induced displacement of a dual axis photovoltaic solar trackers. Thesis, Université d’Ottawa/University of Ottawa. 10.20381/ruor-5421.
  • Adinoyi, M. J., and S. A. M. Said. 2013. Effect of dust accumulation on the power outputs of solar photovoltaic modules. Renewable Energy 60 (December):633–36. doi:10.1016/j.renene.2013.06.014.
  • Akhlaq, M., T. Sheltami, and H. T. Mouftah. 2012, September. A review of techniques and technologies for sand and dust storm detection. Reviews in Environmental Science and Bio/technology 11(3):305–22. doi:10.1007/s11157-012-9282-y.
  • Al Bakri, H., W. A. Elhaija, and A. Al Zyoud. 2021. Solar photovoltaic panels performance improvement using active self-cleaning nanotechnology of SurfaShield G. Energy 223 (May):119908. doi:10.1016/j.energy.2021.119908.
  • Alghamdi, A., and N. Al-Kahtani. 2005. Sand control measures and sand drift fences. Journal of Performance of Constructed Facilities 19 (4):295–99. doi:10.1061/(ASCE)0887-3828(2005)19:4(295).
  • Al-Hemoud, A., A. Al-Dousari, R. Misak, M. Al-Sudairawi, A. Naseeb, H. Al-Dashti, and N. Al-Dousari. 2019. Economic impact and risk assessment of Sand and Dust Storms (SDS) on the oil and gas industry in Kuwait. Sustainability 11 (1):200. doi:10.3390/su11010200.
  • Al-Housani, M., Y. Bicer, and M. Koç. 2019. Assessment of various dry photovoltaic cleaning techniques and frequencies on the power output of CdTe-type modules in dusty environments. Sustainability 11 (10):2850. doi:10.3390/su11102850.
  • Al Siyabi, I., A. Al Mayasi, A. Al Shukaili, and S. Khanna. 2021. Effect of soiling on solar photovoltaic performance under desert climatic conditions. Energies 14 (3):659. doi:10.3390/en14030659.
  • Aly, A. M., and J. Clarke. 2023. Wind design of solar panels for resilient and green communities: CFD with machine learning. Sustainable Cities and Society 94 (July):104529. doi:10.1016/j.scs.2023.104529.
  • Anand, A., M. Beg, and N. Kumar. 2021. Experimental studies and analysis on mobilization of the cohesionless sediments through alluvial channel: A review. Civil Engineering Journal 7 (5):915–36. doi:10.28991/cej-2021-03091700.
  • Arabatzis, I., N. Todorova, I. Fasaki, C. Tsesmeli, A. Peppas, W. Xin Li, and Z. Zhao. 2018. Photocatalytic, self-cleaning, antireflective coating for photovoltaic panels: Characterization and monitoring in real conditions. Solar Energy 159 (January):251–59. doi:10.1016/j.solener.2017.10.088.
  • Benallal, A., and N. Cheggaga. 2021. Impact of dust events on the optimization of photovoltaic-wind hybrid system in desert. Wind Engineering 45 (6):1506–16. doi:10.1177/0309524X20985777.
  • Boretti, A., and S. Castelletto. 2020. Trends in performance factors of large photovoltaic solar plants. Journal of Energy Storage 30 (August):101506. doi:10.1016/j.est.2020.101506.
  • Bouraiou, A., M. Hamouda, A. Chaker, A. Neçaibia, M. Mostefaoui, N. Boutasseta, A. Ziane, R. Dabou, N. Sahouane, and S. Lachtar. 2018. Experimental investigation of observed defects in crystalline silicon PV modules under outdoor hot dry climatic conditions in Algeria. Solar Energy 159 (January):475–87. doi:10.1016/j.solener.2017.11.018.
  • Cabrera, E., A. Schneider, E. Wefringhaus, J. R. Arabach, P. Ferrada, D. Thaller, and F. Araya. 2016. Advancements in the development of “AtaMo”: A solar module adapted for the climate conditions of the Atacama Desert in Chile – the impact of soiling and abrasion. doi:10.4229/EUPVSEC20162016-5BO.11.5.
  • Cao, J., A. Yoshida, P. Saha, and Y. Tamura. 2013. Wind loading characteristics of solar arrays mounted on flat roofs. Journal of Wind Engineering & Industrial Aerodynamics 123 (December):214–25. doi:10.1016/j.jweia.2013.08.014.
  • Chemitek. 2022. Effects of Saharan dust of PV systems. Accessed 21 March 2022 https://chemitek.pt/blog/effects-of-saharan-dust-on-pv-systems.
  • Chou, C.-C., K.-M. Chung, and K.-C. Chang. 2014. Wind loads of solar water heaters: Wind incidence effect. Journal of Aerodynamics 2014 (October):1–10. doi:10.1155/2014/835091.
  • Chou, C.-C., P.-H. Chung, and R.-Y. Yang. 2019. Wind loads on a solar panel at high tilt angles. Applied Sciences 9 (8):1594. doi:10.3390/app9081594.
  • Eric, Wesoff. 2020. “Dan Shugar, NEXTracker CEO, on solar trackers in wind and the terror of torsional galloping.” Pv Magazine USA. January 17, 2020. https://pv-magazine-usa.com/2020/01/17/dan-shugar-nextracker-ceo-on-solar-trackers-in-wind-and-the-terror-of-torsional-galloping/.
  • Fandi, O., S. S. Dol, and M. Alavi. 2022. Review of renewable energy applications and feasibility of tidal energy in the United Arab Emirates. 3 (June):165–74. doi:10.22044/rera.2022.11747.1107.
  • Fezzani, A., M. Guermoui, A. Kouzou, A. Hafaifa, L. Zaghba, S. Drid, J. Rodriguez, and M. Abdelrahem. 2023. Performances analysis of three grid-tied large-scale solar PV plants in varied climatic conditions: A case study in Algeria. Sustainability 15 (19):14282. doi:10.3390/su151914282.
  • Figgis, B., and K. Ilse. 2019. Anti-soiling potential of 1-axis PV trackers. doi:10.4229/EUPVSEC20192019-5BO.7.1.
  • Gerhard, K. 2006. The discussions on energy supply security, on fossil fuel reserves and on green house gas emissions are escalating.
  • Gillette, D. A. 1977. Fine particulate-emissions due to wind erosion. American Society of Agricultural and Biological Engineers 20 (5):0890–97. https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/6795815.
  • Goossens, D., and E. Van Kerschaever. 1999. Aeolian dust deposition on photovoltaic solar cells: The effects of wind velocity and airborne dust concentration on cell performance. Solar Energy 66 (4):277–89. doi:10.1016/S0038-092X(99)00028-6.
  • Goudie, A. S., and N. J. Middleton. 2001. Saharan dust storms: Nature and consequences. Earth-Science Reviews 56 (1–4):179–204. doi:10.1016/S0012-8252(01)00067-8.
  • Grange, S. 2014. Technical note: Averaging wind speeds and directions. Environmental Science & Technology 48 (7):3970–77. doi:10.1021/es404610t.
  • Gupta, V., M. Sharma, R. K. Pachauri, and K. N. Dinesh Babu. 2019. Comprehensive review on effect of dust on solar photovoltaic system and mitigation techniques. Solar Energy 191 (October):596–622. doi:10.1016/j.solener.2019.08.079.
  • Helgren, D. M., and J. M. Prospero. 1987. Wind velocities associated with dust deflation events in the Western Sahara. Journal of Applied Meteorology & Climatology 26 (9):1147–51. doi:10.1175/1520-0450(1987)026<1147:WVAWDD>2.0.CO;2.
  • He, B., H. Lu, C. Zheng, and Y. Wang. 2023. Characteristics and cleaning methods of dust deposition on solar photovoltaic modules—A review. Energy 263 (January):126083. doi:10.1016/j.energy.2022.126083.
  • Ilse, K. K., B. W. Figgis, V. Naumann, C. Hagendorf, and J. Bagdahn. 2018. Fundamentals of soiling processes on photovoltaic modules. Renewable and Sustainable Energy Reviews 98 (C):239–54. doi:10.1016/j.rser.2018.09.015.
  • Kasim, N. K., A. J. Al-Wattar, and K. K. Abbas. 2010. New technique for treatment of the dust accumulation from PV solar panels surface. 8.
  • Kebir, S. T., N. Cheggaga, M. S. Ait-Cheikh, M. Haddadi, and H. Rahmani. 2021. A comprehensive study of diagnosis faults techniques occurring in photovoltaic generators | request PDF. Engineering Review 41 (3):124–41. doi:10.30765/er.1714.
  • Khandekar, M. A., S. Muthyala, S. Agashe, and P. Walunj. 2023. Development of an intelligent sun tracking system for solar PV panel. 2023 IEEE IAS Global Conference on Emerging Technologies (GlobConET), 1–5. 10.1109/GlobConET56651.2023.10149926.
  • Komoto, K., C. Breyer, E. Cunow, K. Megherbi, D. Faiman, and P. van der Vleuten. 2012. Energy from the desert 4: Very large scale PV power–state of the art and into the future. London: Routledge. doi:10.4324/9780203081402.
  • Kruitwagen, L., K. T. Story, J. Friedrich, L. Byers, S. Skillman, and C. Hepburn. 2021. A global inventory of photovoltaic solar energy generating units. Nature 598 (7882):604–10. doi:10.1038/s41586-021-03957-7.
  • Lim, J.-Y., and Y. Chun. 2006. The characteristics of Asian dust events in Northeast Asia during the springtime from 1993 to 2004. Global and Planetary Change 52 (1–4):231–47. doi:10.1016/j.gloplacha.2006.02.010.
  • Lim, B.-H., C.-S. Lim, H. Li, X.-L. Hu, K.-K. Chong, J.-L. Zong, K. Kang, and W.-C. Tan. 2020. Industrial design and implementation of a large-scale dual-axis sun tracker with a vertical-axis-rotating-platform and multiple-row-elevation structures. Solar Energy 199 (March):596–616. doi:10.1016/j.solener.2020.02.006.
  • Meeus, J. 1998. Astronomical algorithms. 2nd ed. Richmond, Va: Willmann-Bell.
  • Mehmood, U., F. Al-Sulaiman, B. Yilbas, B. Salhi, S. Ahmad, and M. Hossain. 2016. Superhydrophobic surfaces with antireflection properties for solar applications: A critical review. Solar Energy Materials and Solar Cells 157 (December):604–23. doi:10.1016/j.solmat.2016.07.038.
  • Miller, R. D., and D. K. Zimmerman. 1981. Wind loads on flat plate photovoltaic array fields. NASA-CR-164454. https://ntrs.nasa.gov/citations/19810016895.
  • Moharram, K. A., M. S. Abd-Elhady, H. A. Kandil, and H. El-Sherif. 2013. Influence of cleaning using water and surfactants on the performance of photovoltaic panels. Energy Conversion and Management 68 (April):266–72. doi:10.1016/j.enconman.2013.01.022.
  • Mostefaoui, M., A. Ziane, A. Bouraiou, and S. Khelifi. 2019. Effect of sand dust accumulation on photovoltaic performance in the Saharan environment: Southern Algeria (adrar). Environmental Science and Pollution Research International 26 (1):259–68. doi:10.1007/s11356-018-3496-7.
  • Naeiji, A., F. Raji, and I. Zisis. 2017. Wind loads on residential scale rooftop photovoltaic panels. Journal of Wind Engineering and Industrial Aerodynamics 168 (September):228–46. doi:10.1016/j.jweia.2017.06.006.
  • Najmi, N., and A. Rachid. 2023. A review on solar panel cleaning systems and techniques. Energies 16 (24):7960. doi:10.3390/en16247960.
  • Nicholson, S. E. 2005. Deserts. In Encyclopedia of world climatology, ed. J. E. Oliver, 324–33. Encyclopedia of Earth Sciences Series. Dordrecht: Springer Netherlands. doi:10.1007/1-4020-3266-8_66.
  • Oral, A., Z. B. Bahsi, and M. Ozer. 2015. 2nd International Congress on Energy Efficiency and Energy Related Materials (ENEFM2014): Proceedings, Oludeniz, Fethiye/Mugla, Turkey, October 16-19, 2014. 10.1007/978-3-319-16901-9.
  • Park, S.-U., and H.-J. In. 2003. Parameterization of dust emission for the simulation of the yellow sand (Asian dust) event observed in March 2002 in Korea. Journal of Geophysical Research Atmospheres 108 (D19):4618. doi:10.1029/2003JD003484.
  • Pfahl, A., M. Buselmeier, and M. Zaschke. 2011. Wind loads on heliostats and photovoltaic trackers of various aspect ratios. Solar Energy 85 (9):2185–201. doi:10.1016/j.solener.2011.06.006.
  • Piliougine, M., C. Cañete, R. Moreno, J. Carretero, J. Hirose, S. Ogawa, and M. Sidrach-de-Cardona. 2013. Comparative analysis of energy produced by photovoltaic modules with anti-soiling coated surface in arid climates. Applied Energy 112 (December):626–34. doi:10.1016/j.apenergy.2013.01.048.
  • Rafiee, A., and K. R. Khalilpour. 2019. Chapter 11 – renewable hybridization of oil and gas supply chains. In Polygeneration with polystorage for chemical and energy hubs, ed. K. R. Khalilpour, 331–72. Academic Press. doi:10.1016/B978-0-12-813306-4.00011-2.
  • Rohr, C., P. Bourke, and D. Banks. 2015. Torsional instability of single-axis solar tracking systems. https://www.semanticscholar.org/paper/Torsional-Instability-of-Single-Axis-Solar-Tracking-Rohr-Bourke/5d58f26e4da75129970aa91c9e4a51bd0a6118aa.
  • Ryavkin, G. N., E. V. Solomin, and O. J. Abdalgbar. 2020. “Solar tracker with self-deploying system.” In 2020 International Ural Conference on Electrical Power Engineering (UralCon), Chelyabinsk, Russia, September 22–24, 87–92. IEEE: doi:10.1109/UralCon49858.2020.9216230.
  • Sahu, B. K. 2015. A study on global solar PV energy developments and policies with special focus on the top ten solar PV power producing countries. Renewable and Sustainable Energy Reviews 43 (March):621–34. doi:10.1016/j.rser.2014.11.058.
  • Sakhuja, M., J. Son, H. Yang, C. Bhatia, and A. Danner. 2014. Outdoor performance and durability testing of antireflecting and self-cleaning glass for photovoltaic applications. Solar Energy 110 (November):231–38. doi:10.1016/j.solener.2014.07.003.
  • Sarver, T., A. Al-Qaraghuli, and L. L. Kazmerski. 2013. A comprehensive review of the impact of dust on the use of solar energy: History, investigations, results, literature, and mitigation approaches. Renewable and Sustainable Energy Reviews 22 (June):698–733. doi:10.1016/j.rser.2012.12.065.
  • Saur News. 2019. “April 17 killer storm hits bhadla solar park too, as developers count damages–Saur energy international.” April 22, 2019. https://www.saurenergy.com/solar-energy-news/april-17-killer-storm-hits-bhadla-solar-park-too-as-developers-count-damages.
  • Senjyu, T., D. Hayashi, A. Yona, N. Urasaki, and T. Funabashi. 2007. Optimal configuration of power generating systems in isolated island with renewable energy. Renewable Energy 32 (11):1917–33. doi:10.1016/j.renene.2006.09.003.
  • Shao, Y., K.-H. Wyrwoll, A. Chappell, J. Huang, Z. Lin, G. H. McTainsh, M. Mikami, T. Y. Tanaka, X. Wang, and S. Yoon. 2011. Dust cycle: An emerging core theme in earth system science. Aeolian Research 2 (4):181–204. doi:10.1016/j.aeolia.2011.02.001.
  • Son, J., S. Kundu, L. K. Verma, M. Sakhuja, A. J. Danner, C. S. Bhatia, and H. Yang. 2012. A practical superhydrophilic self cleaning and antireflective surface for outdoor photovoltaic applications. Solar Energy Materials and Solar Cells 98 (March):46–51. doi:10.1016/j.solmat.2011.10.011.
  • Tegen, I., and I. Fung. 1994. Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness. Journal of Geophysical Research: Atmospheres 99 (D11):22897–914. doi:10.1029/94JD01928.
  • Tegen, I., M. Werner, S. Harrison, and K. Kohfeld. 2004. Relative importance of climate and land use in determining present and future global soil dust emission. Geophysical Research Letters 31 (5). doi:10.1029/2003GL019216.
  • Tilmatine, A., K. Nezha, K. Yanallah, Y. Bellebna, B. Zeid, and A. Zouaghi. 2023. Experimental investigation of a new solar panels cleaning system using ionic wind produced by Corona discharge. Journal of Electrostatics 124 (July):103827. doi:10.1016/j.elstat.2023.103827.
  • TSMS. 2011. Sand and dust storm (SDS) forecast | Turkish state meteorological service. https://mgm.gov.tr/eng/forecast-sds.aspx?s=12&t=a&b=eu&c=conc&y=.
  • Tsoar, H. 1994. Bagnold, R.A. 1941: The physics of blown sand and desert dunes. London: Methuen. Progress in Physical Geography: Earth and Environment 18 (1):91–96. doi:10.1177/030913339401800105.
  • UNEP. 2016. “Global assessment of sand and dust storms.” https://wedocs.unep.org/xmlui/handle/20.500.11822/7681.
  • Valentín, D., C. Valero, M. Egusquiza, and A. Presas. 2022. Failure investigation of a solar tracker due to wind-induced torsional galloping. Engineering Failure Analysis 135 (May):106137. doi:10.1016/j.engfailanal.2022.106137.
  • Wiesinger, F., F. Sutter, A. Fernández-García, J. Wette, F. Wolfertstetter, N. Hanrieder, M. Schmücker, and R. Pitz-Paal. 2020. Sandstorm erosion on solar reflectors: Highly realistic modeling of artificial aging tests based on advanced site assessment. Applied Energy 268 (June):114925. doi:10.1016/j.apenergy.2020.114925.
  • Wood, G. S., R. O. Denoon, and K. C. S. Kwok. 2001. Wind loads on industrial solar panel arrays and supporting roof structure. Wind and Structures 4 (6):481. doi:10.12989/was.2001.4.6.481.
  • Xiao, N., Z. Dong, J. Wang, Z. Liu, Y. Tuo, M. Feng, and C. Zhu. 2021. An improved model to estimate annual sand transport rate by sand-driving winds. CATENA 197 (February):104945. doi:10.1016/j.catena.2020.104945.
  • You, J., M. Lim, K. You, and C. Lee. 2021. Wind coefficient distribution of arranged ground photovoltaic panels. Sustainability 13 (7):3944. doi:10.3390/su13073944.
  • Zarei, T., M. Abdolzadeh, M. Soltani, and C. Aghanajafi. 2021. Computational investigation of dust settlement effect on power generation of three solar tracking photovoltaic modules using a modified angular losses coefficient. Solar Energy 222 (July):269–89. doi:10.1016/j.solener.2021.04.059.
  • Zorrilla-Casanova, J., M. Piliougine, J. Carretero, P. Bernaola, P. Carpena, L. Mora-Lopez, and M. Sidrach-de-Cardona. 2011. Analysis of dust losses in photovoltaic modules. 2985–92. doi:10.3384/ecp110572985.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.