84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of a radiative cooling emitter with indium tin oxide near-infrared heat mirror on the performance of photovoltaic module

, ORCID Icon, , , , & show all
Pages 4504-4513 | Received 21 Dec 2023, Accepted 08 Mar 2024, Published online: 21 Mar 2024

References

  • Ahmed, S., Z. Li, T. Ma, M. S. Javed, and H. Yang. 2021. A comparative performance evaluation and sensitivity analysis of a photovoltaic-thermal system with radiative cooling. Solar Energy Materials and Solar Cells 221:110861. doi:10.1016/j.solmat.2020.110861.
  • Cheng, Z., H. Han, F. Wang, Y. Yan, X. Shi, H. Liang, X. Zhang, and Y. Shuai. 2021. Efficient radiative cooling coating with biomimetic human skin wrinkle structure. Nano Energy 89:106377. doi:10.1016/j.nanoen.2021.106377.
  • Dong, Y., X. Zhang, L. Chen, W. Meng, C. Wang, Z. Cheng, H. Liang, and F. Wang. 2023. Progress in passive daytime radiative cooling: A review from optical mechanism, performance test, and application. Renewable and Sustainable Energy Reviews 188:113801. doi:10.1016/j.rser.2023.113801.
  • Fan, S., and W. Li. 2022. Photonics and thermodynamics concepts in radiative cooling. Nature Photonics 16 (3):182–190. doi:10.1038/s41566-021-00921-9.
  • Hossain, M. M., and M. Gu. 2016. Radiative cooling: Principles, progress, and potentials. Advanced Science 3 (7):1500360. doi:10.1002/advs.201500360.
  • Hu, M., B. Zhao, X. Ao, Q. Cao, J. Wang, Y. Riffat, S. Su, G. Pei, and G. Pei. 2022. Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects. Renewable and Sustainable Energy Reviews 160:112304. doi:10.1016/j.rser.2022.112304.
  • Li, W., Y. Shi, K. Chen, L. Zhu, and S. Fan. 2017. A comprehensive photonic approach for solar cell cooling. ACS Photonics 4 (4):774–782. doi:10.1021/acsphotonics.7b00089.
  • Liu, Y., Z. Liu, Z. Wang, W. Sun, and F. Kong. 2024. Photovoltaic passive cooling via water vapor sorption-evaporation by hydrogel. Applied Thermal Engineering 240:122185. doi:10.1016/j.applthermaleng.2023.122185.
  • Lu, K., B. Zhao, C. Xu, X. Li, and G. Pei. 2022. A full-spectrum synergetic management strategy for passive cooling of solar cells. Solar Energy Materials and Solar Cells 245:111860. doi:10.1016/j.solmat.2022.111860.
  • Perrakis, G., A. C. Tasolamprou, G. Kenanakis, E. N. Economou, S. Tzortzakis, and M. Kafesaki. 2020. Passive radiative cooling and other photonic approaches for the temperature control of photovoltaics: A comparative study for crystalline silicon-based architectures. Optics Express 28 (13):18548–18565. doi:10.1364/OE.388208.
  • Raman, A. P., M. A. Anoma, L. Zhu, E. Rephaeli, and S. Fan. 2014. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515 (7528):540456. doi:10.1038/nature13883.
  • Su, W., P. Cai, J. Darkwa, M. Hu, G. Kokogiannakis, C. Xu, and L. Wang. 2023. Review of daytime radiative cooling technologies and control methods. Applied Thermal Engineering 235:121305. doi:10.1016/j.applthermaleng.2023.121305.
  • Tang, Q., H. Yao, B. Xu, J. Ge, Y. Xu, and K. Gao. 2022. Towards high-efficiency Al-BSF c-Si solar cell with both superior omnidirectional and electrical performance by modulating the tilt angle of quasi-periodic inverted pyramid arrays. Solar Energy Materials & Solar Cells 237:111576. doi:10.1016/j.solmat.2021.111576.
  • Trosseille, J., A. Mongruel, L. Royon, and D. Beysens. 2021. Radiative cooling for dew condensation. International Journal of Heat and Mass Transfer 172:121160. doi:10.1016/j.ijheatmasstransfer.2021.121160.
  • Tu, Y., X. Tan, X. Yang, G. Qi, K. Yan, and Z. Kang. 2023. Antireflection and radiative cooling difunctional coating design for silicon solar cells. Optics Express 31 (14):22296–307. doi:10.1364/OE.488376.
  • Wang, K., G. Luo, X. Guo, S. Li, Z. Liu, and C. Yang. 2021. Radiative cooling of commercial silicon solar cells using a pyramid-textured PDMS film. Solar Energy 225:245–251. doi:10.1016/j.solener.2021.07.025.
  • Xu, L., W. Liu, H. Liu, C. Ke, M. Wang, C. Zhang, E. Aydin, M. Al-Aswad, K. Kotsovos, I. Gereige, et al. 2021. Heat generation and mitigation in silicon solar cells and modules. Joule 5 (3):631–45. doi:10.1016/j.joule.2021.01.012.
  • Yu, X., J. Chan, and C. Chen. 2021. Review of radiative cooling materials: Performance evaluation and design approaches. Nano Energy 88, 88:106259. doi:10.1016/j.nanoen.2021.106259.
  • Zandi, S., P. Saxena, M. Razaghi, and N. E. Gorji. 2020. Simulation of CZTSSe Thin-Film Solar Cells in COMSOL: Three-dimensional optical, electrical, and thermal models. IEEE Journal of Photovoltaics 10 (5):1503–1507. doi:10.1109/jphotov.2020.2999881.
  • Zhang, Z., M. Chen, P. Yu, H. Huang, H. Li, F. Yu, Z. Zhang, Y. Niu, S. Gao, C. Wang, et al. 2023. Study of the roughness effect on the normal spectral emissivity of GH3044. Infrared Physics & Technology 133:104831. doi:10.1016/j.infrared.2023.104831.
  • Zhao, Y., and F. Fang. 2024. Bio-inspired hierarchical wrinkles for tunable infrared reflectance. Surfaces and Interfaces 45:103832. doi:10.1016/j.surfin.2023.103832.
  • Zhao, B., M. Hu, X. Ao, Q. Xuan, and G. Pei. 2018. Comprehensive photonic approach for diurnal photovoltaic and nocturnal radiative cooling. Solar Energy Materials and Solar Cells 178:266–272. doi:10.1016/j.solmat.2018.01.023.
  • Zhao, B., K. Lu, M. Hu, J. Liu, L. Wu, C. Xu, Q. Xuan, and G. Pei. 2022. Radiative cooling of solar cells with micro-grating photonic cooler. Renewable Energy 191:662–668. doi:10.1016/j.renene.2022.04.063.
  • Zhou, Z., X. Wang, Y. Ma, B. Hu, and J. Zhou. 2020. Transparent polymer coatings for energy-efficient daytime window cooling. Cell Reports Physical Science 1 (11):100231. doi:10.1016/j.xcrp.2020.100231.
  • Zhu, L., A. P. Raman, and S. Fan. 2015. Radiative cooling of solar absorbers using a visibly transparent photonic crystal thermal blackbody. Proceedings of the National Academy of Sciences 112 (40):12282–12287. doi:10.1073/pnas.1509453112.
  • Zhu, L., A. Raman, K. X. Wang, M. A. Anoma, and S. Fan. 2014. Radiative cooling of solar cells. Optica 1 (1):32–44. doi:10.1364/optica.1.000032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.