43
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal-hydraulic performance study of swiftlet-type fins for supercritical carbon dioxide precooler

, , , &
Pages 5412-5433 | Received 08 Nov 2023, Accepted 02 Apr 2024, Published online: 11 Apr 2024

References

  • Alfani, D., M. Binotti, E. Macchi, P. Silva, and M. Astolfi. 2021. sCO2 power plants for waste heat recovery: Design optimization and part-load operation strategies. Applied Thermal Engineering 195:117013. doi:10.1016/j.applthermaleng.2021.117013.
  • Baik, S., S. G. Kim, J. Lee, and J. I. Lee. 2017. Study on CO2 – water printed circuit heat exchanger performance operating under various CO₂ phases for S-CO₂ power cycle application. Applied Thermal Engineering 113:1536–46. doi:10.1016/j.applthermaleng.2016.11.132.
  • Binotti, M., M. Astolfi, S. Campanari, G. Manzolini, and P. Silva. 2017. Preliminary assessment of sCO2 cycles for power generation in CSP solar tower plants. Applied Energy 204:1007–17. doi:10.1016/j.apenergy.2017.05.121.
  • Chang, H., Z. Han, X. Li, T. Ma, and Q. Wang. 2022. Experimental investigation on heat transfer performance based on average thermal-resistance ratio for supercritical carbon dioxide in asymmetric airfoil-fin printed circuit heat exchanger. Energy (Oxf) 254:124164. doi:10.1016/j.energy.2022.124164.
  • Han, Z., J. Guo, H. Liao, Z. Zhang, and X. Huai. 2022. Numerical investigation on the thermal-hydraulic performance of supercritical CO2 in a modified airfoil fins heat exchanger. The Journal of Supercritical Fluids 187:105643. doi:10.1016/j.supflu.2022.105643.
  • Heo, J. Y., M. S. Kim, S. Baik, S. J. Bae, and J. I. Lee. 2017. Thermodynamic study of supercritical CO2 Braytoncycle using an isothermal compressor. Applied Energy 206:13. doi:10.1016/j.apenergy.2017.08.081.
  • Huang, C., W. Cai, Y. Wang, Y. Liu, Q. Li, and B. Li. 2019. Review on the characteristics of flow and heat transfer in printed circuit heat exchangers. Applied Thermal Engineering 153:190–205. doi:10.1016/j.applthermaleng.2019.02.131.
  • Jin, F., D. Chen, L. Hu, Y. Huang, and S. Bu. 2022. Optimization of zigzag parameters in printed circuit heat exchanger for supercritical CO2 Brayton cycle based on multi-objective genetic algorithm. Energy Conversion and Management 270:116243. doi:10.1016/j.enconman.2022.116243.
  • Jin, F., D. Chen, L. Hu, Y. Huang, H. Zeng, and J. Wang. 2022. Thermo-hydraulic performance of printed circuit heat exchanger as precooler in supercritical CO2 Brayton cycle. Applied Thermal Engineering 210:118341. doi:10.1016/j.applthermaleng.2022.118341.
  • Khoshvaght-Aliabadi, M., P. Ghodrati, Y. T. Kang, and G. Xie. 2023. Thermohydraulic characteristics of printed circuit recuperators in a supercritical co2 brayton cycle with nonuniform minichannels. International Journal of Energy Research 2023:1–21. doi:10.1155/2023/3765515.
  • Khoshvaght-Aliabadi, M., P. Ghodrati, O. Mahian, and Y. T. Kang. 2024. CFD study of rib-enhanced printed circuit heat exchangers for precoolers in solar power plants’ supercritical CO2 cycle. Energy (Oxford) 292. doi:10.1016/j.energy.2024.130418.
  • Kim, T. H., J. G. Kwon, S. H. Yoon, H. S. Park, M. H. Kim, and J. E. Cha. 2015. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle. Nuclear Engineering & Design 288:110–18. doi:10.1016/j.nucengdes.2015.03.013.
  • Kumar, N., and D. N. Basu. 2023. Thermalhydraulic assessment and design optimization of incorporating flow obstructors in a supercritical minichannel heat sink. Applied Energy 349:121666. doi:10.1016/j.apenergy.2023.121666.
  • Li, X., T. Deng, T. Ma, H. Ke, and Q. Wang. 2019. A new evaluation method for overall heat transfer performance of supercritical carbon dioxide in a printed circuit heat exchanger. Energy Conversion and Management 193:99–105. doi:10.1016/j.enconman.2019.04.061.
  • Li, X. L., G. H. Tang, Y. H. Fan, D. L. Yang, and S. Q. Wang. 2019. Numerical analysis of slotted airfoil fins for printed circuit heat exchanger in s-co2 brayton cycle. Journal of Nuclear Engineering and Radiation Science 5 (4). doi:10.1115/1.4043098.
  • Liu, G., Y. Huang, J. Wang, and R. Liu. 2020. A review on the thermal-hydraulic performance and optimization of printed circuit heat exchangers for supercritical CO2 in advanced nuclear power systems. Renewable and Sustainable Energy Reviews 133:110290. doi:10.1016/j.rser.2020.110290.
  • Liu, X., X. Xu, Y. Jiao, C. He, L. Liu, and C. Dang. 2021. Flow structure with mixed turbulent flow of supercritical CO2 heated in helically coiled tube. Applied Thermal Engineering 189:116684. doi:10.1016/j.applthermaleng.2021.116684.
  • Li, H., Y. Zhang, M. Yao, Y. Yang, W. Han, and W. Bai. 2019. Design assessment of a 5 MW fossil-fired supercritical CO2 power cycle pilot loop. Energy (Oxf) 174:792–804. doi:10.1016/j.energy.2019.02.178.
  • Lv, Y., Z. Wen, Q. Li, and Y. Qiu. 2021. Numerical investigation on thermal hydraulic performance of hybrid wavy channels in a supercritical CO2 precooler. International Journal of Heat and Mass Stansfer 181:121891. doi:10.1016/j.ijheatmasstransfer.2021.121891.
  • Ren, Z., C. Zhao, P. Jiang, and H. Bo. 2019. Investigation on local convection heat transfer of supercritical CO2 during cooling in horizontal semicircular channels of printed circuit heat exchanger. Applied Thermal Engineering 157:113697. doi:10.1016/j.applthermaleng.2019.04.107.
  • Saeed, M., A. Ali Awais, and A. S. Berrouk. 2021. CFD aided design and analysis of a precooler with zigzag channels for supercritical CO2 power cycle. Energy Conversion and Management 236:114029. doi:10.1016/j.enconman.2021.114029.
  • Saeed, M., A. S. Berrouk, M. Salman Siddiqui, and A. Ali Awais. 2020. Effect of printed circuit heat exchanger’s different designs on the performance of supercritical carbon dioxide Brayton cycle. Applied Thermal Engineering 179:115758. doi:10.1016/j.applthermaleng.2020.115758.
  • Saeed, M., and M. Kim. 2019. Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle. Energy Conversion and Management 193:124–39. doi:10.1016/j.enconman.2019.04.058.
  • Tang, L., L. Cui, and B. Sundén. 2020. Optimization of fin configurations and layouts in a printed circuit heat exchanger for supercritical liquefied natural gas near the pseudo-critical temperature. Applied Thermal Engineering 172:115131. doi:10.1016/j.applthermaleng.2020.115131.
  • Wang, K., Z. Zhang, M. Li, and C. Min. 2021. A coupled optical-thermal-fluid-mechanical analysis of parabolic trough solar receivers using supercritical CO2 as heat transfer fluid. Applied Thermal Engineering 183:116154. doi:10.1016/j.applthermaleng.2020.116154.
  • Xie, G. X. Xu, X. Lei, Z. Li, Y. Li, and B. Sunden. 2022. Heat transfer behaviors of some supercritical fluids: A review. Chinese Journal of Aeronautics 35 (1):290–306. doi:10.1016/j.cja.2020.12.022.
  • Xu, X., T. Ma, L. Li, M. Zeng, Y. Chen, Y. Huang, and Q. Wang. 2014. Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle. Applied Thermal Engineering 70 (1):867–75. doi:10.1016/j.applthermaleng.2014.05.040.
  • Xu, H., Z. Zhao, H. Gong, J. Ding, and C. Li. 2023. Numerical analysis of local flow heat transfer of supercritical LNG across the pseudophase transition in different airfoil channels. International Journal of Heat and Mass Transfer 202:123752. doi:10.1016/j.ijheatmasstransfer.2022.123752.
  • Yang, Y., H. Li, B. Xie, L. Zhang, and Y. Zhang. 2022. Experimental study of the flow and heat transfer performance of a PCHE with rhombic fin channels. Energy Conversion and Management 254:115137. doi:10.1016/j.enconman.2021.115137.
  • Zhang, H., J. Guo, X. Cui, J. Zhou, X. Huai, H. Zhang, K. Cheng, and Z. Han. 2021. Experimental and numerical investigations of thermal-hydraulic characteristics in a novel airfoil fin heat exchanger. International Journal of Heat and Mass Transfer 175:121333. doi:10.1016/j.ijheatmasstransfer.2021.121333.
  • Zhu, C., Y. Guo, H. Yang, B. Ding, and X. Duan. 2021. Investigation of the flow and heat transfer characteristics of helium gas in printed circuit heat exchangers with asymmetrical airfoil fins. Applied Thermal Engineering 186:116478. doi:10.1016/j.applthermaleng.2020.116478.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.