98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermo-hydraulic performance of metal oxide nanofluid flow through the helical coil tube of a three-fluid heat exchanger: an experimental and optimization study

, ORCID Icon, , ORCID Icon &
Pages 5974-5993 | Received 30 Nov 2023, Accepted 09 Apr 2024, Published online: 22 Apr 2024

References

  • Akcay, S. 2023a. Heat transfer analysis of pulsating nanofluid flow in a semicircular wavy channel with baffles. Sādhanā 48 (2):57. doi:10.1007/s12046-023-02119-x.
  • Akcay, S. 2023b. Numerical analysis of hydraulic and thermal performance of Al2O3-water nanofluid in a Zigzag channel with central winglets. Gazi University Journal of Science 36 (1):383–97. doi:10.35378/gujs.1012201.
  • Barik, A. K., P. K. Satapathy, and S. S. Sahoo. 2016. CFD study of forced convective heat transfer enhancement in a 90° bend duct of square cross section using nano fluid. Sadhana 41 (7):795–804. doi:10.1007/s12046-016-0507-6.
  • Bertoli, S. L., R. Tribess, N. de Souza, C. K. de Souza, M. G. Reiter, and M. J. Gonçalves. 2022. A simple solution for heat transfer in a triple tube heat exchanger. Heat Transfer Engineering 43 (22):1918–45. doi:10.1080/01457632.2021.2022321.
  • Chamoli, S., P. Yu, & A. Kumar. 2016. Multi-response optimization of geometric and flow parameters in a heat exchanger tube with perforated disk inserts by Taguchi grey relational analysis. Applied Thermal Engineering 103:1339–50. doi:10.1016/j.applthermaleng.2016.04.166.
  • Chiang, K., and F. Chang. 2006. Application of response surface methodology in the parametric optimization of a pin-fin type heat sink. International Communications in Heat and Mass Transfer 33 (7):836–45. doi:10.1016/j.icheatmasstransfer.2006.04.011.
  • Dagdevir, T. 2023. Numerical and optimization study on a heat exchanger tube inserted with ring by Taguchi approach. Energy Environment and Storage 3 (1):19–27. doi:10.52924/oqgs5091.
  • Dandoutiya, B. K., and A. Kumar. 2023. Study of thermal performance of double pipe heat exchanger using W-cut twisted tape, energy sources, Part A: Recovery. Utilization, and Environmental Effects 45 (2):5221–38. doi:10.1080/15567036.2023.2207497.
  • Darbari, A. M., M. A. Alavi, S. R. Saleh, and V. Nejati. 2022. Sensitivity analysis of nanofluid flow over different flat tubes confined between two parallel plates using Taguchi method and statistical analysis of variance. International Journal of Thermal Sciences 173:107428. doi:10.1016/j.ijthermalsci.2021.107428.
  • Eastman, J. A., S. R. Phillpot, S. U. S. Choi, and P. Keblinski. 2004. Thermal transport in nanofluids. Annual Review of Materials Research 34 (1):219–46. doi:10.1146/annurev.matsci.34.052803.090621.
  • Hasan, H. A., and K. H. Suffer. 2023. Thermal performance enhancement of energy storage system using spiral-wired tube heat exchanger, energy sources, Part A: Recovery. Utilization, and Environmental Effects 45 (3):7280–93. doi:10.1080/15567036.2023.2220676.
  • Huminic, G., and A. Huminic. 2016. Heat transfer and entropy generation analyses of nanofluids in helically coiled tube-in-tube heat exchangers. International Communications in Heat and Mass Transfer 71:118–25. doi:10.1016/j.icheatmasstransfer.2015.12.031.
  • Kamenik, B., E. B. Elcioglu, A. Turgut, R. Mondragón, L. H. Lopez, J. P. Vallejo, and L. Lugo, M. H. Buschmann, J. Ravnik. 2022. Numerical analysis of performance uncertainty of heat exchangers operated with nanofluids. International Journal of Thermofluids 14:100144. doi:10.1016/j.ijft.2022.100144.
  • Khan, I., K. Saeed, and I. Khan. 2019. Nanoparticles: Properties, applications andtoxicities. Arabian Journal Chemistry 12 (7):908–31. doi:10.1016/j.arabjc.2017.05.011.
  • Kumar, R., and P. Kumar. 2022. Thermophysical analysis of Al2O3/CuO nanofluid in water/EG basefluid for hybrid louvered heat exchanger. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 237 (5):1229–43. doi:10.1177/09544062221124722.
  • Mohapatra, T., S. Ray, S. S. Sahoo, and B. N. Padhi. 2019. Numerical study on heat transfer and pressure drop characteristics of fluid flow in an inserted coiled tube type three fluid heat exchanger. Heat Transfer: Asian Research 48 (4):1440–65. doi:10.1002/htj.21440.
  • Nambala, S., P. Kishore, S. Pujari, M. Kumar, and K. Jayant. 2022. Optimization through Taguchi and artificial neural networks on thermal performance of a radiator using graphene based coolant. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 236 (8):1680–93. doi:10.1177/09576509221097476.
  • Quadir, G., I. A. Badruddin, and A. B. Salman. 2014. Numerical investigation of the performance of a triple concentric pipe heat exchanger. International Journal of Heat and Mass Transfer 75:165–72. doi:10.1016/j.ijheatmasstransfer.2014.03.042.
  • Raei, B. 2021. Statistical analysis of nanofluid heat transfer in a heat exchanger using Taguchi method. Journal of Heat and Mass Transfer Research 8 (1):29–38. doi:10.22075/jhmtr.2020.20678.1287.
  • Sameer, S., S. B. Prakash, and G. N. S. 2021. Effectiveness study in shell and tube heat exchanger at various concentrations of CuO-water nanofluid for parallel flow. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 235 (24):7951–62. doi:10.1177/09544062211000787.
  • Rostami, A., and D. Ganji. 2023. Selecting superior fin geometry among four suggested geometries for shell and helically coiled finned tube heat exchangers with numerical simulation and experimental validation. Results in Engineering 17:100867. doi:10.1016/j.rineng.2022.100867.
  • Shrivastava, D., and T. A. Ameel. 2004. Three-fluid heat exchangers with three thermal communications. Part B: Effectiveness evaluation. International Journal of Heat and Mass Transfer 47 (17–18):3867–75. doi:10.1016/j.ijheatmasstransfer.2004.03.020.
  • Sridharan, M. 2021. Performance optimization of counter flow double pipe heat exchanger using grey relational analysis. International Journal of Ambient Energy 43 (1):5318–26. doi:10.1080/01430750.2021.1946148.
  • Thara, R., G. Irfan, L. J. Kumar, and J. P. Ganjigatti. 2022. Multi-Objective optimization of Plate-Fin heat exchanger using Taguchi-based Grey relational analysis. Journal of Mines, Metals and Fuels 252–61. doi:10.18311/jmmf/2022/31984.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.