41
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on inhibition of coal spontaneous combustion by carbon dioxide and nitrogen

, ORCID Icon, , , , , , & show all
Pages 6444-6460 | Received 16 Jan 2024, Accepted 22 Apr 2024, Published online: 10 May 2024

References

  • Battistutta, E., P. van Hemert, M. Lutynski, H. Bruining, and K. H. Wolf. 2010. Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. International Journal of Coal Geology 84 (1):39–48. doi:10.1016/j.coal.2010.08.002.
  • Bu, C., D. Liu, X. Chen, D. Pallarès, and A. Gómez-Barea. 2014. Ignition behavior of single coal particle in a fluidized bed under O2/CO2 and O2/N2 atmospheres: A combination of visual image and particle temperature. Applied Energy 115:301–08. doi:10.1016/j.apenergy.2013.10.040.
  • Colaizzi, G. J. 2004. Prevention, control and/or extinguishment of coal seam fires using cellular grout. International Journal of Coal Geology 59 (1–2):75–81. doi:10.1016/j.coal.2003.11.004.
  • Deng, J., W. Chen, C. Wang, and W. Wang. 2021. Prediction model for coal spontaneous combustion based on SA-SVM. American Chemical Society Omega 6 (17):11307–18. doi:10.1021/acsomega.1c00169.
  • Ding, C., Z. Li, J. Wang, B. Lu, and D. Gao. 2023. Effects of inert gas CO2/N2 injection on coal low-temperature oxidation characteristic: Experiments and simulations. Arabian Journal of Chemistry 16 (2):104510. doi:10.1016/j.arabjc.2022.104510.
  • Dong, K., J. Wang, Y. Zhang, Z. Liang, and Q. Shi. 2022. Performance of fire extinguishing gel with strong stability for coal mine. Combustion Science and Technology 194 (8):1661–77. doi:10.1080/00102202.2020.1825402.
  • Dou, G., J. Liu, Z. Jiang, H. Jian, and X. Zhong. 2022. Preparation and characterization of a lignin based hydrogel inhibitor on coal spontaneous combustion. Fuel 308:122074. doi:10.1016/j.fuel.2021.122074.
  • du, Z., P. Wang, Y. Shi, L. Yang, and X. Zhao. 2002. Application of MKY-360 carbon dioxide reactor in mine fire control. Coal Science Technology 30:10–12. doi:10.13199/j.cst.2002.07.12.duzhg.003.
  • Fan, L., X. Meng, J. Zhao, Y. Zhou, R. Chu, S. Yu, W. Li, G. Wu, X. Jiang, and Z. Miao. 2022. Reaction site evolution during low-temperature oxidation of low-rank coal. Fuel 327:125195. doi:10.1016/j.fuel.2022.125195.
  • Fu, S., B. Tan, G. Cheng, H. Wang, X. Fang, Z. Shao, and Z. Li. 2022. Study of adsorption characteristics of CO2, O2, and N2 in coal micropores and mesopores at normal pressure. Industrial & Engineering Chemistry Research 61 (34):12845–56. doi:10.1021/acs.iecr.2c01911.
  • Gao, J., R. Z. Chu, X. Meng, J. Yang, D. Yang, X. Li, and W. Lou. 2020. Synergistic mechanism of CO2 and active functional groups during low temperature oxidation of lignite. Fuel 278:118407. doi:10.1016/j.fuel.2020.118407.
  • Huang, J., X. Wu, J. Liu, K. Chang, F. Evrendilek, and G. Liang. 2021. Flue gas-to-ash desulfurization of combustion of textile dyeing sludge: Its dependency on temperature, lignocellulosic residue, and CaO. Journal of chemical engineering 417:127906. doi:10.1016/j.cej.2020.127906.
  • Hu, S., Z. Li, G. Feng, G. Xu, T. Xia, H. Jiang, Y. Zhang, J. Cheng, Q. Gao, Z. Wang, et al. 2016. Changes on methane concentration after CO2 injection in a longwall gob: A case study. Journal of Natural Gas Science & Engineering 29:550–58. doi:10.1016/j.jngse.2016.01.012.
  • IEA, 2022. World energy outlook 2022. IEA: Paris. http://www.iea.org/reports/world-energy-outlook-2022.
  • Jiang, X., S. Yang, B. Zhou, and L. Lan. 2024. Effect of injecting inert gas at different spontaneous combustion stages on active groups in coal. Fuel 359:130074. doi:10.1016/j.fuel.2023.130074.
  • Li, L., C. Hao, R. Zhai, W. He, and C. Deng. 2023. Study on the mechanism of free radical scavenger TEMPO blocking in coal oxidation chain reaction. Fuel 331:125853. doi:10.1016/j.fuel.2022.125853.
  • Li, J., W. Lu, J. Li, Y. Yang, and Z. Li. 2023. Towards understanding of internal mechanism of coal reactivity enhancement after thermal decomposition at low temperature. Fuel 337:127118. doi:10.1016/j.fuel.2022.127118.
  • Liu, W., X. Chu, H. Xu, W. Chen, L. Ma, Y. Qin, and J. Wei. 2022. Oxidation reaction constants for coal spontaneous combustion under inert gas environments: An experimental investigation. Energy 247:123457. doi:10.1016/j.energy.2022.123457.
  • Liu, W., Y. Qin, W. Zhao, D. Wu, J. Liu, and C. He. 2020. Modeling of gas transport driven by density gradients of free gas within a coal matrix: Perspective of isothermal adsorption. Energy & Fuels 34 (11):13728–39. doi:10.1021/acs.energyfuels.0c02442.
  • Liu, M. X., G. Shi, Z. Guo, Y. Wang, and L. Ma. 2016. 3-D simulation of gases transport under condition of inert gas injection into goaf. Heat and Mass Transfer 52 (12):2723–34. doi:10.1007/s00231-016-1775-8.
  • Liu, H., and F. Wang. 2022. Thermal characteristics and kinetic analysis of coal-oxygen reaction under the condition of inert gas. International Journal of Coal Preparation and Utilization 42 (3):846–62. doi:10.1080/19392699.2019.1671377.
  • Lou, H., and T. Jia. 2020. Competitive adsorption difference during coal spontaneous combustion process in noble gas atmosphere. China Safety Science Journal 30:60–67. doi:10.16265/j.cnki.issn1003-3033.2020.04.010.
  • Lu, Y., Y. Liu, S. Shi, G. G. X. Wang, H. Li, and T. Wang. 2020. Micro-particles stabilized aqueous foam for coal spontaneous combustion control and its flow characteristics. Process Safety and Environmental Protection 139:262–72. doi:10.1016/j.psep.2020.04.017.
  • National Bureau of Statistics of China. 2023. Statistical bulletin on national economic and social development of the People’s Republic of China in 2022. National Bureau of Statistics of China. http://www.stats.gov.cn/sj/zxfb/202302/t20230228_1919011.html.
  • Ni, Z., H. Bi, C. Jiang, C. Wang, J. Tian, W. Zhou, H. Sun, and Q. Lin. 2021. Investigation of the co-pyrolysis of coal slime and coffee industry residue based on machine learning methods and TG-FTIR: Synergistic effect, kinetics and thermodynamic. Fuel 305:121527. doi:10.1016/j.fuel.2021.121527.
  • Niu, H., Q. Sun, Y. Bu, H. Chen, Y. Yang, S. Li, S. Sun, Z. Mao, and M. Tao. 2022. Study of the microstructure and oxidation characteristics of residual coal in deep mines. Journal of Cleaner Production 373:133923. doi:10.1016/j.jclepro.2022.133923.
  • Onifade, M., B. Genc, and S. Bada. 2020. Spontaneous combustion liability between coal seams: A thermogravimetric study. International Journal of Mining Science and Technology 30 (5):691–98. doi:10.1016/j.ijmst.2020.03.006.
  • Qiao, M., T. Ren, J. Roberts, X. Yang, Z. Li, and J. Wu. 2023. Insight into proactive inertisation strategies for spontaneous combustion management during longwall mining of coal seams with various orientations. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):2788–810. doi:10.1080/15567036.2023.2191062.
  • Ren, L., Q. Li, J. Deng, X. Yang, L. Ma, W. Wang, and L. Ren. 2019. Inhibiting effect of CO2 on the oxidative combustion thermodynamics of coal. RSC advances 9 (70):41126–34. doi:10.1039/C9RA08875J.
  • Schmidt, M., C. Lohrer, and U. Krause. 2003. Self-ignition of dust at reduced volume fractions of ambient oxygen. Journal of Loss Prevention in the Process Industries 16 (2):141–47. doi:10.1016/S0950-4230(02)00095-5.
  • Shen, Z., L. Zhang, Q. Liang, J. Xu, K. Lin, and H. Liu. 2018. In situ experimental and modeling study on coal char combustion for coarse particle with effect of gasification in air (O2/N2) and O2/CO2 atmospheres. Fuel 233:177–87. doi:10.1016/j.fuel.2018.06.045.
  • Shi, G., P. Ding, Z. Guo, and Y. Wang. 2019. Modeling temperature distribution upon liquid-nitrogen injection into a self heating coal mine goaf. Process Safety and Environmental Protection 126:278–86. doi:10.1016/j.psep.2019.03.033.
  • Si, J., L. Li, G. Cheng, H. Shao, Y. Wang, and Z. Li. 2021. Characteristics and safety of CO2 for the fire prevention technology with gob-side entry retaining in goaf. American Chemical Society Omega 6 (28):18518–26. doi:10.1021/acsomega.1c02836.
  • Singh, A. K., R. V. K. Singh, M. P. Singh, H. Chandra, and N. K. Shukla. 2007. Mine fire gas indices and their application to Indian underground coal mine fires. International Journal of Coal Geology 69 (3):192–204. doi:10.1016/j.coal.2006.04.004.
  • Wang, H., and C. Chen. 2015. Experimental study on greenhouse gas emissions caused by spontaneous coal combustion. Energy & Fuels 29 (8):5213–21. doi:10.1021/acs.energyfuels.5b00327.
  • Wang, X., H. Deng, C. Deng, C. Cui, Y. Shan, and Z. Song. 2022. Study on the spontaneous combustion and oxidation mechanism of low molecular ketone compounds in coal. Fuel 321:124022. doi:10.1016/j.fuel.2022.124022.
  • Wang, D., G. Dou, X. Zhong, H. Xin, and B. Qin. 2014. An experimental approach to selecting chemical inhibitors to retard the spontaneous combustion of coal. Fuel 117:218–23. doi:10.1016/j.fuel.2013.09.070.
  • Wang, K., T. Han, J. Deng, and Y. Zhang. 2022. Comparison of combustion characteristics and kinetics of Jurassic and Carboniferous-Permian coals in China. Energy 254:124315. doi:10.1016/j.energy.2022.124315.
  • Xie, H., G. Ni, S. Li, Q. Sun, K. Dong, J. Xie, G. Wang, and Y. Liu. 2019. The influence of surfactant on pore fractal characteristics of composite acidized coal. Fuel 253:741–53. doi:10.1016/j.fuel.2019.05.073.
  • Yuan, L., and A. C. Smith. 2014. CFD modelling of nitrogen injection in a longwall gob area. International Journal of Mining and Mineral Engineering 5 (2):164. doi:10.1504/IJMME.2014.060220.
  • Yu, Z., Y. Gu, S. Yang, and J. Deng. 2021. Temperature characteristic of crushed coal under liquid coolant injection: A comparative investigation between CO2 and N2. Journal of Thermal Analysis and Calorimetry 144 (2):363–72. doi:10.1007/s10973-020-10150-x.
  • Zhang, C., J. Wang, Z. Zhang, and Y. Zhang. 2013. Liquid carbon dioxide fire extinguishing equipments and their engendering applications. Science and Technology Review 31:44–48. doi:10.1039/c4gc01959h.
  • Zhang, X., C. Yu, F. Gao, B. Lu, and J. Zou. 2023. Study on the mechanism of antioxidants affecting the spontaneous combustion oxidation of coal. American Chemical Society Omega 8 (3):3396–403. doi:10.1021/acsomega.2c07273.
  • Zhou, B., S. Yang, W. Yang, X. Jiang, W. Song, J. Cai, Q. Xu, and Z. Tang. 2022. Variation characteristics of active groups and macroscopic gas products during low-temperature oxidation of coal under the action of inert gases N2 and CO2. Fuel 307:121893. doi:10.1016/j.fuel.2021.121893.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.