46
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of ammonia energy ratio and diesel pilot-injection strategy on the performance of ammonia-diesel dual fuel engine

, , ORCID Icon, &
Pages 6461-6476 | Received 11 Aug 2023, Accepted 20 Apr 2024, Published online: 12 May 2024

References

  • Amsden, A. A., P. J. O’Rourke, and T. D. Butler. 1989. KIVA-II: A computer program for chemically reactive flows with sprays. Size: Pages: 164. United States. Page Medium: ED.
  • Beale, J. C., and R. D. Reitz. 1999. Modeling spray atomization with the kelvin-Helmholtz/Rayleigh-Taylor hybrid model. Atomization and Sprays 9 (6):623–50. doi:10.1615/AtomizSpr.v9.i6.40.
  • Chiong, M.-C., C. T. Chong, J.-H. Ng, S. Mashruk, W. W. F. Chong, N. A. Samiran, G. R. Mong, and A. Valera-Medina. 2021. Advancements of combustion technologies in the ammonia-fuelled engines. Energy Conversion and Management 244:114460. doi:10.1016/j.enconman.2021.114460.
  • Dimitriou, P., and R. Javaid. 2020. A review of ammonia as a compression ignition engine fuel. International Journal of Hydrogen Energy 45 (11):7098–118. doi:10.1016/j.ijhydene.2019.12.209.
  • Ekin, F., O. A. Ozsoysal, and H. Arslan. 2022. The effect of using hydrogen at partial load in a diesel-natural gas dual fuel engine. International Journal of Hydrogen Energy 47 (42):18532–50. doi:10.1016/j.ijhydene.2022.03.287.
  • Farzaneh, F., and S. Jung. 2023. Lifecycle carbon footprint comparison between internal combustion engine versus electric transit vehicle: A case study in the U.S. Journal of Cleaner Production 390:136111. doi:10.1016/j.jclepro.2023.136111.
  • Fayyazbakhsh, A., M. L. Bell, X. Zhu, X. Mei, M. Koutný, N. Hajinajaf, and Y. Zhang. 2022. Engine emissions with air pollutants and greenhouse gases and their control technologies. Journal of Cleaner Production 376. doi:10.1016/j.jclepro.2022.134260.
  • Frassoldati, A., G. D’Errico, T. Lucchini, A. Stagni, A. Cuoci, T. Faravelli, A. Onorati, and E. Ranzi. 2015. Reduced kinetic mechanisms of diesel fuel surrogate for engine CFD simulations. Combustion and Flame 162 (10):3991–4007. doi:10.1016/j.combustflame.2015.07.039.
  • Giddey, S., S. P. S. Badwal, and A. Kulkarni. 2013. Review of electrochemical ammonia production technologies and materials. International Journal of Hydrogen Energy 38 (34):14576–94. doi:10.1016/j.ijhydene.2013.09.054.
  • Grannell, S. M., D. N. Assanis, S. V. Bohac, and D. E. Gillespie. 2008. The fuel mix limits and efficiency of a Stoichiometric, ammonia, and gasoline dual fueled spark ignition engine. Journal of Engineering for Gas Turbines and Power 130 (4). doi: 10.1115/1.2898837.
  • Hadjkacem, S., M. A. Jemni, Z. Driss, and M. S. Abid. 2020. Effect of engine compression ratio on thermodynamic behavior using alternative hydrogen-LPG fuel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 1–16. doi:10.1080/15567036.2020.1839146.
  • Han, X., M. Lubrano Lavadera, and A. A. Konnov. 2021. An experimental and kinetic modeling study on the laminar burning velocity of NH3+N2O+air flames. Combustion and Flame 228:13–28. doi:10.1016/j.combustflame.2021.01.027.
  • Han, Z., and R. D. Reitz. 1995. Turbulence modeling of internal combustion engines using RNG κ-ε models. Combustion Science and Technology 106 (4–6):267–95. doi:10.1080/00102209508907782.
  • Hiraoka, K., D. Matsunaga, T. Kamino, Y. Honda, K. Toshinaga, Y. Murakami, and H. Nakamura. 2023. Experimental and numerical analysis on combustion characteristics of ammonia and diesel dual fuel engine. Warrendale, PA, USA: SAE International.
  • Jin, S., B. Wu, Z. Zi, P. Yang, T. Shi, and J. Zhang. 2023. Effects of fuel injection strategy and ammonia energy ratio on combustion and emissions of ammonia-diesel dual-fuel engine. Fuel 341:127668. doi:10.1016/j.fuel.2023.127668.
  • Kurien, C., and M. Mittal. 2022. Review on the production and utilization of green ammonia as an alternate fuel in dual-fuel compression ignition engines. Energy Conversion and Management 251 251:114990. doi:10.1016/j.enconman.2021.114990.
  • Liu, J., Q. Guo, J. Guo, and F. Wang. 2021. Optimization of a diesel/natural gas dual fuel engine under different diesel substitution ratios. Fuel 305:121522. doi:10.1016/j.fuel.2021.121522.
  • Li, T., X. Zhou, N. Wang, X. Wang, R. Chen, S. Li, and P. Yi. 2022. A comparison between low- and high-pressure injection dual-fuel modes of diesel-pilot-ignition ammonia combustion engines. Journal of the Energy Institute 102:362–73. doi:10.1016/j.joei.2022.04.009.
  • Mi, S., H. Wu, X. Pei, C. Liu, L. Zheng, W. Zhao, Y. Qian, and X. Lu. 2023. Potential of ammonia energy fraction and diesel pilot-injection strategy on improving combustion and emission performance in an ammonia-diesel dual fuel engine. Fuel 343:127889. doi:10.1016/j.fuel.2023.127889.
  • Nadimi, E., G. Przybyła, M. T. Lewandowski, and W. Adamczyk. 2023. Effects of ammonia on combustion, emissions, and performance of the ammonia/diesel dual-fuel compression ignition engine. Journal of the Energy Institute 107:101158. doi:10.1016/j.joei.2022.101158.
  • Niki, Y. 2021. Reductions in unburned ammonia and nitrous oxide emissions from an ammonia-assisted diesel engine with early timing diesel pilot-injection. Journal of Engineering for Gas Turbines and Power 143 (9). doi:10.1115/1.4051002.
  • Niki, Y., Y. Nitta, H. Sekiguchi, and K. Hirata. 2019. Diesel fuel multiple injection effects on emission characteristics of diesel engine mixed ammonia gas into intake air. Journal of Engineering for Gas Turbines and Power 141 (6). doi: 10.1115/1.4042507.
  • O’Rourke, P. J., and A. A. Amsden. 2000. A spray/wall interaction submodel for the KIVA-3 wall film model. SAE Transactions 109:281–98.
  • Otomo, J., M. Koshi, T. Mitsumori, H. Iwasaki, and K. Yamada. 2018. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion. International Journal of Hydrogen Energy 43 (5):3004–14. doi:10.1016/j.ijhydene.2017.12.066.
  • Reiter, A. J., and S.-C. Kong. 2011. Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel. Fuel 90 (1):87–97. doi:10.1016/j.fuel.2010.07.055.
  • Rousselle, C. M., P. Brequigny, and A. Dupuy. 2023. Impact of splitting n-dodecane Pilot injection on Ammonia RCCI engine. Warrendale, PA, USA: SAE International.
  • Ryu, K., G. E. Zacharakis-Jutz, and S.-C. Kong. 2014. Effects of gaseous ammonia direct injection on performance characteristics of a spark-ignition engine. Applied Energy 116:206–15. doi:10.1016/j.apenergy.2013.11.067.
  • Schmidt, D. P., and C. J. Rutland. 2000. A new droplet collision algorithm. Journal of Computational Physics 164 (1):62–80. doi:10.1006/jcph.2000.6568.
  • Shin, J., and S. Park. 2023. Numerical analysis for optimizing combustion strategy in an ammonia-diesel dual-fuel engine. Energy Conversion and Management 284:116980. doi:10.1016/j.enconman.2023.116980.
  • Song, Y., H. Hashemi, J. M. Christensen, C. Zou, P. Marshall, and P. Glarborg. 2016. Ammonia oxidation at high pressure and intermediate temperatures. Fuel 181:358–65. doi:10.1016/j.fuel.2016.04.100.
  • Sun, Q., Y. Li, Y. Zhang, J. Gao, H. Dong, D. Feng, Z. Chen, and S. Sun. 2023. Research on NO generation characteristics of ammonia-premixed flame. Science of the Total Environment 876:162707. doi:10.1016/j.scitotenv.2023.162707.
  • Teoh, Y. H., H. G. How, T. D. Le, H. T. Nguyen, D. L. Loo, T. Rashid, and F. Sher. 2023. A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel 333:126525. doi:10.1016/j.fuel.2022.126525.
  • Wang, B., C. Yang, H. Wang, D. Hu, and Y. Wang. 2023. Effect of diesel-ignited Ammonia/Hydrogen mixture fuel combustion on engine combustion and emission performance. Fuel 331:125865. doi:10.1016/j.fuel.2022.125865.
  • Xu, L., Y. Chang, M. Treacy, Y. Zhou, M. Jia, and X.-S. Bai. 2023. A skeletal chemical kinetic mechanism for ammonia/n-heptane combustion. Fuel 331. doi:10.1016/j.fuel.2022.125830.
  • Xu, X., Q. Xia, Y. Xu, B. Guo, and M. Zhang. 2023. Simulation of combustion process in diesel/butanol dual fuel engine. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects 45 (1):1485–98. doi:10.1080/15567036.2023.2175934.
  • Yang, R., Y. Yan, Z. Liu, and J. Liu. 2023. Formation and evolution of thermal and fuel nitrogen oxides in the turbulent combustion field of ammonia internal combustion engines. Warrendale, PA, USA: SAE International.
  • Yousefi, A., H. Guo, S. Dev, S. Lafrance, and B. Liko. 2022a. A study on split diesel injection on thermal efficiency and emissions of an ammonia/diesel dual-fuel engine. Fuel 316:123412. doi:10.1016/j.fuel.2022.123412.
  • Yousefi, A., H. Guo, S. Dev, B. Liko, and S. Lafrance. 2022b. Effects of ammonia energy fraction and diesel injection timing on combustion and emissions of an ammonia/diesel dual-fuel engine. Fuel 314:122723. doi:10.1016/j.fuel.2021.122723.
  • Yu, L., W. Zhou, Y. Feng, W. Wang, J. Zhu, Y. Qian, and X. Lu. 2020. The effect of ammonia addition on the low-temperature autoignition of n-heptane: An experimental and modeling study. Combustion and Flame 217:4–11. doi:10.1016/j.combustflame.2020.03.019.
  • Zamfirescu, C., and I. Dincer. 2008. Using ammonia as a sustainable fuel. Journal of Power Sources 185 (1):459–65. doi:10.1016/j.jpowsour.2008.02.097.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.