35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development and preparation of novel nano-enhanced organic eutectic phase change materials for low-temperature solar thermal applications

ORCID Icon & ORCID Icon
Pages 6537-6554 | Received 01 Mar 2024, Accepted 23 Apr 2024, Published online: 12 May 2024

References

  • Agyenim, F., N. Hewitt, P. Eames, and M. Smyth. 2010. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews 14 (2):615–28. doi:10.1016/j.rser.2009.10.015
  • Al-Kayiem, H. H., and S. C. Lin. 2014. Performance evaluation of a solar water heater integrated with a PCM nanocomposite TES at various inclinations. Solar Energy 109:82–92. doi:10.1016/j.solener.2014.08.021
  • Alva, G., Y. Lin, and G. Fang. 2018. An overview of thermal energy storage systems. Energy 144:341–78. doi:10.1016/j.energy.2017.12.037
  • Amir, A.-A., M. A. Jafa, B. S. Mazumder, A. Sari, M. Afzaal, and F. A. Al-Sulaiman. 2021. Effects of carbon-based fillers on thermal properties of fatty acids and their eutectics as phase change materials used for thermal energy storage: A review. Journal of Energy Storage 35 (December 2020):102329. doi:10.1016/j.est.2021.102329
  • Aslfattahi, N., R. Saidur, A. Arifutzzaman, R. Sadri, N. Bimbo, M. Faizul Mohd Sabri, P. A. Maughan, L. Bouscarrat, R. J. Dawson, S. Mohd Said, et al. 2020. Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as a new class of nanocomposites. Journal of Energy Storage 27 (November 2019):101115. doi:10.1016/j.est.2019.101115
  • Bou-Rabee, M. A., and S. A. Sulaiman. 2015. On seasonal variation of solar irradiation in Kuwait. International Journal of Renewable Energy Research 5 (2):2–7.
  • Chaatouf, D., B. Raillani, M. Salhi, S. Amraqui, and A. Mezrhab. 2023. Experimental and numerical study of a natural convection indirect solar dryer with PCM tubes: Dynamic, thermal and nutritional quality analysis. Solar Energy 264 (May):111975. doi:10.1016/j.solener.2023.111975
  • Chen, Y., X. Yang, and P. Huang. 2023. Preparation and characterization of myristic-palmitic acid/nano silicon dioxide/nano silicon carbide composite phase change materials for air conditioning condensation heat recovery system. Materials Science 29 (1):65–72. doi:10.5755/j02.ms.29761
  • Chinnasamy, V., and H. Cho. 2022. Investigation on thermal properties enhancement of lauryl alcohol with multi-walled carbon nanotubes as phase change material for thermal energy storage. Case Studies in Thermal Engineering 31 (November 2021):101826. doi:10.1016/j.csite.2022.101826
  • Dai, J., F. Ma, Z. Fu, C. Li, M. Jia, K. Shi, Y. Wen, and W. Wang. 2021. Applicability assessment of stearic acid/Palmitic acid binary eutectic phase change material in cooling pavement. Renewable Energy 175:748–59. doi:10.1016/j.renene.2021.05.063
  • Fallahi, A., G. Guldentops, M. Tao, S. Granados-Focil, and S. Van Dessel. 2017. Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Applied Thermal Engineering 127:1427–41. doi:10.1016/j.applthermaleng.2017.08.161
  • Fikri, M. A., A. K. Pandey, M. Samykano, K. Kadirgama, M. George, R. Saidur, J. Selvaraj, N. A. Rahim, K. Sharma, and V. V. Tyagi. 2022. Thermal conductivity, reliability, and stability assessment of phase change material (PCM) doped with functionalized multi-wall carbon nanotubes (FMWCNTs). Journal of Energy Storage 50 (5):104676. doi:10.1016/j.est.2022.104676
  • Gielen, D., F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini. 2019. The role of renewable energy in the global energy transformation. Energy Strategy Reviews 24 (January):38–50. doi:10.1016/j.esr.2019.01.006
  • Gururaj, G., S. Duraipandi, and A. Sreekumar. 2023. Development and characterization of a novel eutectic mixture with stearyl alcohol and adipic acid for hot air storage applications. Journal of Energy Storage 61 (December 2022):106708. doi:10.1016/j.est.2023.106708
  • Jacob, J., A. K. Pandey, N. A. Rahim, J. Selvaraj, J. Paul, M. Samykano, and R. Saidur. 2022. Quantifying thermophysical properties, characterization, and thermal cycle testing of nano-enhanced organic eutectic phase change materials for thermal energy storage applications. Solar Energy Materials & Solar Cells 248 (January):112008. doi:10.1016/j.solmat.2022.112008
  • Kabir, E., P. Kumar, S. Kumar, A. A. Adelodun, and K. H. Kim. 2018. Solar energy: Potential and future prospects. Renewable and Sustainable Energy Reviews 82 (September 2016):894–900. doi:10.1016/j.rser.2017.09.094
  • Kalidasan, B., A. K. Pandey, R. Saidur, and V. V. Tyagi. 2023. Energizing organic phase change materials using silver nanoparticles for thermal energy storage. Journal of Energy Storage 58 (5):106361. doi:10.1016/j.est.2022.106361
  • Karaipekli, A., A. Biçer, A. Sarı, and V. Veer Tyagi. 2017. Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Conversion and Management 134:373–81. doi:10.1016/j.enconman.2016.12.053
  • Khordehgah, N., D. Ahmad, H. Jouhara, A. Zabnie, and T. Lipinski. 2020. International journal of thermo fl uids latent thermal energy storage technologies and applications: A review, 6. doi: 10.1016/j.ijft.2020.100039
  • Klein, T., and W. R. L. Anderegg. 2021. A vast increase in heat exposure in the 21st Century is driven by global warming and urban population growth. Sustainable Cities and Society 73 (January):103098. doi:10.1016/j.scs.2021.103098
  • Kong, W., X. Fu, Y. Yuan, Z. Liu, and J. Lei. 2017. Preparation and thermal properties of crosslinked polyurethane/lauric acid composites as novel form stable phase change materials with a low degree of supercooling. RSC Advances 7 (47):29554–62. doi:10.1039/c7ra04504b
  • Laghari, I. A., M. Samykano, A. K. Pandey, K. Kadirgama, and Y. Nath Mishra. 2022. Binary composite (TiO2-gr) based nano-enhanced organic phase change material: Effect on thermophysical properties. Journal of Energy Storage 51 (5):104526. doi:10.1016/j.est.2022.104526
  • Luo, Z., H. Zhang, X. Gao, T. Xu, Y. Fang, and Z. Zhang. 2017. Fabrication and characterization of form-stable capric-palmitic-stearic acid ternary eutectic mixture/Nano-SiO2 composite phase change material. Energy and Buildings 147:41–46. doi:10.1016/j.enbuild.2017.04.005
  • Madhankumar, S., K. Viswanathan, W. Wu, and M. Ikhsan. 2023. Analysis of indirect solar dryer with PCM energy storage material: Energy, economic, drying and optimization. Solar Energy 249 (March 2022):667–83. doi:10.1016/j.solener.2022.12.009
  • Ma, G., L. Han, J. Sun, and Y. Jia. 2016. Thermal properties and reliability of eutectic mixture of stearic acid-acetamide as phase change material for latent heat storage. The Journal of Chemical Thermodynamics 106:178–86. doi:10.1016/j.jct.2016.11.022
  • Mishra, A. K., B. B. Lahiri, and J. Philip. 2018. E ff ect of surface functionalization and physical properties of nanoinclusions on thermal conductivity enhancement in an organic phase change material. American Chemical Society Omega 3:9487–504. doi:10.1021/acsomega.8b01084
  • Newell, R. G., D. Raimi, and G. Aldana. 2019. Global Energy outlook 2019: The next generation of Energy. 1–38.
  • Nitsas, M., and I. P. Koronaki. 2021. Performance analysis of nanoparticles-enhanced PCM: An experimental approach. Thermal Science and Engineering Progress 25 (May):100963. doi:10.1016/j.tsep.2021.100963
  • Paul, J., A. K. Pandey, Y. N. Mishra, Z. Said, Y. Kumar Mishra, Z. Ma, K. K. Jeeja Jacob, V. V. Samykano, M. Tyagi, and V. V. Tyagi. 2022. Nano-enhanced organic form stable PCMs for medium temperature solar thermal energy harvesting: Recent progresses, challenges, and opportunities. Renewable and Sustainable Energy Reviews 161 (November 2021):112321. doi:10.1016/j.rser.2022.112321
  • Putra, N., S. Rawi, M. Amin, K. Eny, E. A. Kosasih, and T. M. I. Mahlia. 2019. Preparation of Beeswax/Multi-walled carbon nanotubes as novel shape-stable nanocomposite phase-change material for thermal energy storage. Journal of Energy Storage 21 (November 2018):32–39. doi:10.1016/j.est.2018.11.007
  • Rama Mohan, T., T. A. Branton, and D. T. Gopal Nayak. 2015. Physical, spectroscopic and thermal characterization of Biofield treated myristic acid. Journal of Fundamentals of Renewable Energy and Applications 5 (05). doi:10.4172/2090-4541.1000180
  • Rathod, M. K., and J. Banerjee. 2013. Thermal stability of phase change materials used in latent heat energy storage systems: A review. Renewable and Sustainable Energy Reviews 18:246–58. doi:10.1016/j.rser.2012.10.022
  • Reddy, K. S., V. Mudgal, and T. K. Mallick. 2018. Review of latent heat thermal energy storage for improved material stability and effective load management. Journal of Energy Storage 15:205–27. doi:10.1016/j.est.2017.11.005
  • Saraf, S. D., D. Panda, and K. M. Gangawane. 2023. Performance analysis of hybrid expanded graphite-NiFe2O4 nanoparticles-enhanced eutectic PCM for thermal energy storage. Journal of Energy Storage 73 (PD):109188. doi:10.1016/j.est.2023.109188
  • Sharma, R. K., P. Ganesan, V. V. Tyagi, H. S. C. Metselaar, and S. C. Sandaran. 2016. Thermal properties and heat storage analysis of palmitic acid-TiO2 composite as nano-enhanced organic phase change material (NEOPCM). Applied Thermal Engineering 99:1254–62. doi:10.1016/j.applthermaleng.2016.01.130
  • Singh, R. P., J. Y. Sze, S. C. Kaushik, D. Rakshit, and A. Romagnoli. 2021. Thermal performance enhancement of Eutectic PCM laden with functionalised graphene nanoplatelets for an efficient solar absorption cooling storage system. Journal of Energy Storage 33 (November 2020):102092. doi:10.1016/j.est.2020.102092
  • Sun, X., L. Liu, Y. Mo, J. Li, and C. Li. 2020. Enhanced thermal energy storage of a paraffin-based phase change material (PCM) using nano carbons. Applied Thermal Engineering 181 (September):115992. doi:10.1016/j.applthermaleng.2020.115992
  • Vivekananthan, M., and V. Arasu Amirtham. 2019. Characterisation and thermophysical properties of graphene nanoparticles dispersed erythritol PCM for medium temperature thermal energy storage applications. Thermochimica Acta 676 (March):94–103. doi:10.1016/j.tca.2019.03.037
  • Wang, X., X. Cheng, Y. Li, G. Li, and J. Xu. 2019. Self-assembly of three-dimensional 1-Octadecanol/Graphene thermal storage materials. Solar Energy 179 (May 2018):128–34. doi:10.1016/j.solener.2018.12.041
  • Wang, C., K. Chen, J. Huang, Z. Cai, Z. Hu, and T. Wang. 2019. Thermal behavior of polyethylene glycol based phase change materials for thermal energy storage with multiwall carbon nanotubes additives. Energy 180:873–80. doi:10.1016/j.energy.2019.05.163
  • Wang, Q., C. Wu, S. Sun, X. Wang, S. Wu, D. Cui, S. Pan, and H. Sheng. 2023. Comprehensive performance of composite phase change materials based on ternary eutectic chloride with CuO nanoparticles for thermal energy storage systems. Solar Energy 250 (January):324–34. doi:10.1016/j.solener.2022.12.051
  • Wang, F., W. Zheng, Y. Gou, Y. Jia, and H. Li. 2022. Thermal behaviors of energy storage process of eutectic hydrated salt phase change materials modified by nano-TiO2. Journal of Energy Storage 53 (April):105077. doi:10.1016/j.est.2022.105077
  • Yanping, Y., T. Wenquan, C. Xiaoling, and B. Li. 2011. Theoretic prediction of melting temperature and latent heat for a fatty acid eutectic mixture. Journal of Chemical and Engineering Data 56 (6):2889–91. doi:10.1021/je200057j
  • Yin, S., M. Lu, C. Liu, L. Tong, L. Wang, and Y. Ding. 2024. Fabrication and thermal properties of capric–stearic acid Eutectic/Nano-SiO2 phase change material with expanded graphite and CuO for thermal energy storage. Journal of Energy Storage 77 (November 2023):110025. doi:10.1016/j.est.2023.110025
  • Zhang, R., D. Chen, L. Chen, X. Cao, X. Li, and Y. Qu. 2022. Preparation and thermal properties analysis of fatty Acids/1-hexadecanol binary eutectic phase change materials reinforced with TiO2 particles. Journal of Energy Storage 51 (November 2021):104546. doi:10.1016/j.est.2022.104546
  • Zhang, N., Y. Yuan, X. Cao, Y. Du, Z. Zhang, and Y. Gui. 2018. Latent heat thermal energy storage systems with solid – liquid phase change materials: A review. Advanced Engineering Materials 1700753 (6):1–30. doi:10.1002/adem.201700753
  • Zhou, L., X. Wang, Q. Wu, Z. Ni, K. Zhou, C. Wen, X. Yan, and T. Xie. 2024. Carbon nanotube sponge encapsulated Ag-MWCNTs/PW composite phase change materials with enhanced thermal conductivity, high solar-/Electric-thermal energy conversion and storage. Journal of Energy Storage 84 (PB):110925. doi:10.1016/j.est.2024.110925

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.