603
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Association between network characteristics and bicycle ridership across a large metropolitan region

, , , , , , & show all
Pages 344-355 | Received 19 Nov 2021, Accepted 17 Jan 2024, Published online: 06 Feb 2024

References

  • Australian Bureau of Statistics. (2020). Australian Bureau of Statistics: Data by Region. https://itt.abs.gov.au/itt/r.jsp?databyregion
  • Beck, B., Chong, D., Olivier, J., Perkins, M., Tsay, A., Rushford, A., Li, L., Cameron, P., Fry, R., & Johnson, M. (2019). How much space do drivers provide when passing cyclists? Understanding the impact of motor vehicle and infrastructure characteristics on passing distance. Accident; Analysis and Prevention, 128, 253–260. https://doi.org/10.1016/j.aap.2019.03.007
  • Beck, B., Winters, M., Thompson, J., Stevenson, M., & Pettit, C. (2021). Spatial variation in bicycling: A retrospective review of travel survey data from Greater. Melbourne, Australia. SocArXiv. https://doi.org/10.31235/osf.io/78qgf
  • Beck, B., Zammit-Mangion, A., Fry, R., Smith, K., & Gabbe, B. (2022). Spatiotemporal mapping of major trauma in Victoria, Australia. PloS One, 17(7), e0266521. https://doi.org/10.1371/journal.pone.0266521
  • Berrigan, D., Pickle, L. W., & Dill, J. (2010). Associations between street connectivity and active transportation. International Journal of Health Geographics, 9(1), 20. https://doi.org/10.1186/1476-072X-9-20
  • Besag, J., York, J., & Mollie, A. (1991). Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 43(1), 1–20. https://doi.org/10.1007/BF00116466
  • Blangiardo, M., & Cameletti, M. (2015). Spatial and spatio-temporal Bayesian models with R-INLA. John Wiley & Sons.
  • Boisjoly, G., Lachapelle, U., & El-Geneidy, A. (2020). Bicycle network performance: Assessing the directness of bicycle facilities through connectivity measures, a Montreal, Canada case study. International Journal of Sustainable Transportation, 14(8), 620–634. https://doi.org/10.1080/15568318.2019.1595791
  • Buehler, R., & Pucher, J. (2012). Cycling to work in 90 large American cities: New evidence on the role of bike paths and lanes. Transportation, 39(2), 409–432. https://doi.org/10.1007/s11116-011-9355-8
  • El-Basyouny, K., & Sayed, T. (2009). Urban arterial accident prediction models with spatial effects. Transportation Research Record: Journal of the Transportation Research Board, 2102(1), 27–33. https://doi.org/10.3141/2102-04
  • Ferster, C., Fischer, J., Manaugh, K., Nelson, T., & Winters, M. (2020). Using OpenStreetMap to inventory bicycle infrastructure: A comparison with open data from cities. International Journal of Sustainable Transportation, 14(1), 64–73. https://doi.org/10.1080/15568318.2018.1519746
  • Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7
  • Geofrabrik (2021). GEOFABRIK//Downloads. https://www.geofabrik.de/data/download.html
  • Gil, J. (2017). Street network analysis “edge effects”: Examining the sensitivity of centrality measures to boundary conditions. Environment and Planning B: Urban Analytics and City Science, 44(5), 819–836. https://doi.org/10.1177/0265813516650678
  • Gilardi, A., Lovelace, R., & Padgham, M. (2020). Data structures and methods for reproducible street network analysis: Overview and implementations in R. OSF Preprints. https://doi.org/10.31219/osf.io/78yub
  • Handy, S. L., & Xing, Y. (2011). Factors correlated with bicycle commuting: A study in six small US cities. International Journal of Sustainable Transportation, 5(2), 91–110. https://doi.org/10.1080/15568310903514789
  • ITS Leeds (2020). Slopes package. https://github.com/ropensci/slopes
  • Kamel, M. B., & Sayed, T. (2021). The impact of bike network indicators on bike kilometers traveled and bike safety: A network theory approach. Environment and Planning B: Urban Analytics and City Science, 48(7), 2055–2072.
  • Kamel, M. B., Sayed, T., & Bigazzi, A. (2020). A composite zonal index for biking attractiveness and safety. Accident; Analysis and Prevention, 137, 105439. https://doi.org/10.1016/j.aap.2020.105439
  • Kazemzadeh, K., Laureshyn, A., Winslott Hiselius, L., & Ronchi, E. (2020). Expanding the scope of the bicycle level-of-service concept: A review of the literature. Sustainability, 12(7), 2944. https://doi.org/10.3390/su12072944
  • Kellstedt, D. K., Spengler, J. O., Foster, M., Lee, C., & Maddock, J. E. (2021). A scoping review of bikeability assessment methods. Journal of Community Health, 46(1), 211–224. https://doi.org/10.1007/s10900-020-00846-4
  • Kraus, S., & Koch, N. (2021). Provisional COVID-19 infrastructure induces large, rapid increases in cycling. Proceedings of the National Academy of Sciences, 118(15). https://doi.org/10.1073/pnas.2024399118
  • Lawson, A. B. (2013). Bayesian disease mapping: Hierarchical modeling in spatial epidemiology. Chapman and Hall/CRC.
  • Lowry, M., & Loh, T. H. (2017). Quantifying bicycle network connectivity. Preventive Medicine, 95 Suppl, S134–S140. https://doi.org/10.1016/j.ypmed.2016.12.007
  • Marshall, W. E., & Garrick, N. W. (2010). Effect of street network design on walking and biking. Transportation Research Record: Journal of the Transportation Research Board, 2198(1), 103–115. https://doi.org/10.3141/2198-12
  • Nelson, T., Roy, A., Ferster, C., Fischer, J., Brum-Bastos, V., Laberee, K., Yu, H., & Winters, M. (2021). Generalized model for mapping bicycle ridership with crowdsourced data. Transportation Research Part C: Emerging Technologies, 125, 102981. https://doi.org/10.1016/j.trc.2021.102981
  • OpenStreetMap. (2021). OpenStreetMap Wiki. https://wiki.openstreetmap.org/wiki/Main_Page
  • Osama, A., & Sayed, T. (2016). Evaluating the impact of bike network indicators on cyclist safety using macro-level collision prediction models. Accident; Analysis and Prevention, 97, 28–37. https://doi.org/10.1016/j.aap.2016.08.010
  • Osama, A., Sayed, T., & Bigazzi, A. Y. (2017). Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables. Transportation Research Part A: Policy and Practice, 96, 14–28. https://doi.org/10.1016/j.tra.2016.11.016
  • Pearson, L., Dipnall, J., Gabbe, B., Braaf, S., White, S., Backhouse, M., & Beck, B. (2022). The potential for bike riding across entire cities: Quantifying spatial variation in interest in bike riding. Journal of Transport & Health, 24, 101290. https://doi.org/10.1016/j.jth.2021.101290
  • Pearson, L., Gabbe, B., Reeder, S., & Beck, B. (2023). Barriers and enablers of bike riding for transport and recreational purposes in Australia. Journal of Transport & Health, 28, 101538. https://doi.org/10.1016/j.jth.2022.101538
  • Pearson, L. K., Berkovic, D., Reeder, S., Gabbe, B. J., & Beck, B. (2022). Adults’ self-reported barriers and enablers to riding a bike for transport: A systematic review. Transport Reviews, 43(3), 356–384. https://doi.org/10.1080/01441647.2022.2113570
  • Posit team (2023). RStudio: Integrated Development Environment for R. Posit Software, PBC, Boston, MA. http://www.posit.co/.
  • Pucher, J., & Buehler, R. (2017). Cycling towards a more sustainable transport future. Transport Reviews, 37(6), 689–694. https://doi.org/10.1080/01441647.2017.1340234
  • R Core Team (2023). R: A language and environment for statistical ## computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.
  • Reggiani, G., van Oijen, T., Hamedmoghadam, H., Daamen, W., Vu, H. L., & Hoogendoorn, S. (2022). Understanding bikeability: A methodology to assess urban networks. Transportation, 49(3), 897–925.
  • Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 71(2), 319–392. https://doi.org/10.1111/j.1467-9868.2008.00700.x
  • Schoner, J. E., & Levinson, D. M. (2014). The missing link: Bicycle infrastructure networks and ridership in 74 US cities. Transportation, 41(6), 1187–1204. https://doi.org/10.1007/s11116-014-9538-1
  • UK Department of Transport. (2020). Gear change: A bold vision for cycling and walking.
  • Victorian Department of Environment Land Water and Planning. (2021). Vicmap elevation. https://www.land.vic.gov.au/maps-and-spatial/spatial-data/vicmap-catalogue/vicmap-elevation
  • Winters, M., Brauer, M., Setton, E. M., & Teschke, K. (2013). Mapping bikeability: A spatial tool to support sustainable travel. Environment and Planning B: Planning and Design, 40(5), 865–883. https://doi.org/10.1068/b38185
  • Zhang, Y., Bigham, J., Ragland, D., & Chen, X. (2015). Investigating the associations between road network structure and non-motorist accidents. Journal of Transport Geography, 42, 34–47. https://doi.org/10.1016/j.jtrangeo.2014.10.010