86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Investigating the effects of dermal exposure to in-vivo animal models on the riot-control properties of a powder formulation of Tragia involucrata leaf hair lining

, , &
Pages 151-161 | Received 24 Nov 2022, Accepted 15 Jun 2023, Published online: 10 Jul 2023

References

  • Olajos EJ, Salem H. Riot control agents: pharmacology, toxicology, biochemistry, and chemistry. J Appl Toxicol. 2001;21(5):355–391. doi: 10.1002/jat.767.
  • Satpute RM, Kushwaha PK, Nagar DP, et al. Comparative safety evaluation of riot control agents of synthetic and natural origin. Inhal Toxicol. 2018;30(2):89–97. doi: 10.1080/08958378.2018.1451575.
  • Gupta SM, Kumar K. Stinging plants: as future bio-weapon. J Complement Integr Med. 2016;13(3):217–219. doi: 10.1515/jcim-2015-0108.
  • Dutta KN, Chattopadhyay P, Banerjee S. Exploration of Mucuna pruriens (Linn) starch powder formulations as a natural non-lethal riot control agent. Toxicol Environ Health Sci. 2020;12(2):125–130. doi: 10.1007/s13530-020-00044-8.
  • Gupta SM, Kumar K, Pathak R. Phytochemical analysis of Indian stinging plants: an initiative towards development of future novel biothreat agents for self-defence. Proc Natl Acad Sci, India, Sect B Biol Sci. 2018;88(2):819–825. doi: 10.1007/s40011-016-0821-0.
  • Pallie M, Perera PK, Goonasekara CL, et al. Efficacy and safety of freeze-dried form of Tragia involucrata L. decoction in treating diabetes: a randomized controlled clinical trial. Clin Trials Degener Dis. 2020;5(3):31. doi: 10.4103/2542-3975.30061.
  • Reddy BS, Rao NR, Vijeepallam K, et al. Phytochemical, pharmacological and biological profiles of Tragia species (family: Euphorbiaceae). Afr J Tradit Complement Altern Med. 2017;14(3):105–112. doi: 10.21010/ajtcam.v14i3.11
  • Ravi P, RamaRao V, Pravallika KE. Phytochemical, pharmacological profiles of tragiainvolucrata. Int J Chem Tech Res. 2018;11(06):37–42. doi: 10.20902/IJCTR.2018.110605.
  • Patil BS, Raut ID, Bhutkar MA, et al. Evaluation of anthelmintic activity of leaves of Tragia involucrata linn. J Pharmacogn Phytochem. 2015;4(1):155–159.
  • Sulaiman CT, Balachandran I. LC/MS characterization of antioxidant flavonoids from tragia involucrata L. Beni-Suef Univ J Basic Appl Sci. 2016;5(3):231–235. http://creativecommons.org/licenses/bync-nd/4.0/. doi: 10.1016/j.bjbas.2016.06.001.
  • Franceschi VR, Nakata PA. Calcium oxalate in plants: formation and function. Annu Rev Plant Biol. 2005;56:41–71. doi: 10.1146/annurev.arplant.56.032604.144106
  • Pallie MS, Perera PK, Kumarasinghe N, et al. Ethnopharmacological use and biological activities of Tragia involucrata L. Evid Based Complement Alternat Med. 2020;2020:8848676. doi: 10.1155/2020/8848676.
  • Schep LJ, Slaughter RJ, McBride DI. Riot control agents: the tear gases CN, CS and OC—a medical review. J R Army Med Corps. 2015;161(2):94–99. doi: 10.1136/jramc-2013-000165.
  • Salinas ML, Ogura T, Soffchi L. Irritant contact dermatitis caused by needle-like calcium oxalate crystals, raphides, in Agave tequilana among workers in tequila distilleries and agave plantations. Contact Dermatitis. 2001;44(2):94–96. doi: 10.1034/j.1600-0536.2001.440208.x.
  • Banerjee S, Chaurasia G, Pal D, et al. Investigation on crosslinking density for development of novel interpenetrating polymer network (IPN) based formulation. 2010. http://nopr.niscpr.res.in/handle/123456789/10302.
  • Shah RB, Tawakkul MA, Khan MA. Comparative evaluation of flow for pharmaceutical powders and granules. Aaps Pharmscitech. 2008;9(1):250–258. doi: 10.1208/s12249-008-9046-8.
  • Jan S, Rafiq SI, Saxena DC. Effect of physical properties on flow ability of commercial rice flour/powder for effective bulk handling. Int J Comput Appl. 2015; 975:8887.
  • Emery E, Oliver J, Pugsley T, et al. Flowability of moist pharmaceutical powders. Powder Technol. 2009;189(3):409–415. doi: 10.1016/j.powtec.2008.06.017.
  • OECD. 2017. Test no. 402: Acute dermal toxicity, OECD guidelines for the testing of chemicals, Section 4. Paris: OECD Publishing. doi: 10.1787/20745788.
  • Stallard N, Whitehead A, Indans I. Statistical evaluation of an acute dermal toxicity test using the dermal fixed dose procedure. Hum Exp Toxicol. 2004;23(8):405–412. doi: 10.1191/0960327104ht465oa.
  • Han SM, Lee GG, Park KK. Acute dermal toxicity study of bee venom (Apis melliferaL.) in rats. Toxicol Res. 2012;28(2):99–102. doi: 10.5487/TR.2012.28.2.099.
  • Dillon GP, Yiannikouris A, Moran CA. Toxicological evaluation of a glycan preparation from an enzymatic hydrolysis of Saccharomyces cerevisiae. Regul Toxicol Pharmacol. 2021;123:104924. doi: 10.1016/j.yrtph.2021.104924.
  • Banerjee S, Chattopadhyay P, Ghosh A, et al. Acute dermal irritation, sensitization, and acute toxicity studies of a transdermal patch for prophylaxis against (±) anatoxin-A poisoning. Int J Toxicol. 2013;32(4):308–313. doi: 10.1177/1091581813489996.
  • Chakrabarti S, Mazumder B, Rajkonwar J, et al. bFGF and collagen matrix hydrogel attenuates burn wound inflammation through activation of ERK and TRK pathway. Sci Rep. 2021;11(1):1–0. doi: 10.1038/s41598-021-82888-9.
  • Chakrabarti S, Islam J, Hazarika H, et al. Safety profile of silver sulfadiazine-bFGF-loaded hydrogel for partial thickness burn wounds. Cutan Ocul Toxicol. 2018;37(3):258–266. doi: 10.1080/15569527.2018.1442843.
  • Thorburn KM. Injuries after use of the lacrimatory agent chloroacetophenone in a confined space. Arch Environ Health. 1982;37(3):182–186. doi: 10.1080/00039896.1982.10667560.
  • Vilke GM, Castillo EM, San C, et al. Restraint techniques, injuries, and death: use of force techniques. In: Encyclopedia of forensic and legal medicine, Vol. 4. Amsterdam: Elsevier Ltd.; 2016. p. 141–147. doi: 10.1016/B978-0-12-800034-2.00324-4.
  • Li X, He Z, Ding WF, et al. Assessment of dermal safety of oil extracted from periplaneta americana: acute dermal toxicity, irritation, and sensitization. Cutan Ocul Toxicol. 2020;39(3):193–199. doi: 10.1080/15569527.2020.1769126.
  • Khalaf AA, Hassanen EI, Azouz RA, et al. Ameliorative effect of zinc oxide nanoparticles against dermal toxicity induced by lead oxide in rats. Int J Nanomedicine. 2019; 14:7729–7741. doi: 10.2147/IJN.S220572.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.