186
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Comparison of three different dosages of low-level laser therapy on expression of cell proliferation and inflammatory markers following ovariohysterectomy in rats

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 273-282 | Received 10 May 2023, Accepted 21 Aug 2023, Published online: 14 Sep 2023

References

  • Baum CL, Arpey CJ. Normal cutaneous wound healing: clinical correlation with cellular and molecular events. Dermatol Surgery. 2005;31(6):674–686. doi: 10.1097/00042728-200506000-00011.]
  • Medrado AR, Pugliese LS, Reis SRA, et al. Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med. 2003;32(3):239–244. doi: 10.1002/lsm.10126.
  • Silveira PC, da Silva LA, Fraga DB, et al. Evaluation of mitochondrial respiratory chain activity in muscle healing by low-level laser therapy. J Photochem Photobiol B. 2009;95(2):89–92. doi: 10.1016/j.jphotobiol.2009.01.004.
  • Dorsett‐Martin WA. Rat models of skin wound healing: a review. Wound Repair and Regeneration. 2004;12(6):591–599. doi: 10.1111/j.1067-1927.2004.12601.x.
  • Jarrahi M, Vafaei AA, Taherian AA, et al. Evaluation of topical matricaria chamomilla extract activity on linear incisional wound healing in albino rats. Nat Prod Res. 2010;24(8):697–702. doi: 10.1080/14786410701654875.
  • Jeong W, Yang CE, Roh TS, et al. Scar prevention and enhanced wound healing induced by polydeoxyribonucleotide in a rat incisional wound-healing model. Int J Mol Sci. 2017;18(8):1698. doi: 10.3390/ijms18081698.
  • Murrell JC, Mitchinson SL, Lesperance L, et al. Electroencephalography during ovariohysterectomy in rats anaesthetized with halothane. Vet Anaesth Analg. 2010;37(1):14–24. doi: 10.1111/j.1467-2995.2009.00504.x.
  • Lascelles BDX, Cripps PJ, Jones A, et al. Post-operative Central hypersensitivity and pain: the pre-emptive value of pethidine for ovariohysterectomy. Pain. 1997;73(3):461–471. doi: 10.1016/S0304-3959(97)00141-3.
  • Fitzpatrick CL, Weir HL, Monnet E. Effects of infiltration of the incision site with bupivacaine on postoperative pain and incisional healing in dogs undergoing ovariohysterectomy. J Am Vet Med Assoc. 2010;237(4):395–401. doi: 10.2460/javma.237.4.395.
  • Rozanska D, Rozanski P, Orzelski M, et al. Unilateral flank ovariohysterectomy in Guinea pigs (Cavia porcellus). N Z Vet J. 2016;64(6):360–363. doi: 10.1080/00480169.2016.1207574.
  • George Broughton II, Janis JE, Attinger CE. Wound healing: an overview. Plast Reconstr Surg. 2006;117(7 Suppl):1e–S-32e-S. doi: 10.1097/01.prs.0000222562.60260.f9.
  • Gonzalez ACDO, Costa TF, Andrade ZDA, et al. Wound healing-A literature review. An Bras Dermatol. 2016;91(5):614–620. doi: 10.1590/abd1806-4841.20164741.
  • Sharma S, Rai VK, Narang RK, et al. Collagen-based formulations for wound healing: a literature review. Life Sci. 2022;297:120436. doi: 10.1016/j.lfs.2021.120096.
  • Grabsch EA, Burrell LJ, Padiglione A, et al. Risk of environmental and healthcare worker contamination with vancomycin resistant enterococci during outpatient procedures and haemodialysis. Infect Control Hosp Epidemiol. 2006;27(3):287–293. doi: 10.1086/503174.
  • Yanmaz LE, Ersoz U, Okur S, et al. The effect of low-level laser therapy on rat unicortical femoral defect. The Thai Journal of Veterinary Medicine. 2021;51(2):277–284. doi: 10.56808/2985-1130.3119.
  • Turgut F, Yanmaz LE. Investigating effects of locally applied boric acid on fracture healing with and without low-level laser therapy. Lasers Med Sci. 2022;38(1):11. doi: 10.1007/s10103-022-03695-w.
  • Marcos RL, Leal‐Junior ECP, Arnold G, et al. Low‐level laser therapy in collagenase‐induced achilles tendinitis in rats: Analyses of biochemical and biomechanical aspects. J Orthop Res. 2012;30(12):1945–1951. doi: 10.1002/jor.22156.
  • Okur S, Okumuş Z. Effects of low-level laser therapy and therapeutic ultrasound on freund’s complete adjuvant-induced knee arthritis model in rats. Arch Rheumatol. 2023;38(1):32–43. doi: 10.46497/ArchRheumatol.2022.9409.
  • Gonçalves RV, Novaes RD, do Carmo Cupertino M, et al. Time-dependent effects of low-level laser therapy on the morphology and oxidative response in the skin wound healing in rats. Lasers Med Sci. 2013;28(2):383–390. doi: 10.1007/s10103-012-1066-7.
  • Cunha JLS, Carvalho F, Pereira Filho RN, et al. Effects of different protocols of low-level laser therapy on collagen deposition in wound healing. Braz Dent J. 2019;30(4):317–324. doi: 10.1590/0103-6440201902400.
  • Martignago CCS, Oliveira RF, Pires-Oliveira DAA, et al. Effect of low-level laser therapy on the gene expression of collagen and vascular endothelial growth factor in a culture of fibroblast cells in mice. Lasers Med Sci. 2015;30(1):203–208. doi: 10.1007/s10103-014-1644-y.
  • Hawkins DH, Abrahamse H. The role of laser fluence in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium‐neon laser irradiation. Lasers Surg Med. 2006;38(1):74–83. doi: 10.1002/lsm.20271.
  • Assis L, Moretti AIS, Abrahão TB, et al. Low-level laser therapy (808 nm) contributes to muscle regeneration and prevents fibrosis in rat tibialis anterior muscle after cryolesion. Lasers Med Sci. 2013;28(3):947–955. doi: 10.1007/s10103-012-1183-3.
  • Nascimento MFD, Almeida BMD, Cunha JLS, et al. Improvement of bone repair in diabetic rats subjected to ƛ780 nm low-level laser therapy. Acta Cir Bras. 2015;30(10):660–667. doi: 10.1590/S0102-865020150100000002.
  • Percival SL, Francolini I, Donelli G. Low-level laser therapy as an antimicrobial and antibiofilm technology and its relevance to wound healing. Future Microbiol. 2015;10(2):255–272. doi: 10.2217/fmb.14.109.
  • Brassolatti P, Bossini PS, Oliveira MCD, et al. Comparative effects of two different doses of low‐level laser therapy on wound healing third‐degree burns in rats. Microsc Res Tech. 2016;79(4):313–320. doi: 10.1002/jemt.22632.
  • Bossini PS, Rennó ACM, Ribeiro DA, et al. Low level laser therapy (830 nm) improves bone repair in osteoporotic rats: similar outcomes at two different dosages. Exp Gerontol. 2012;47(2):136–142. doi: 10.1016/j.exger.2011.11.005.
  • Rizzi CF, Mauriz JL, Freitas Corrêa DS, et al. Effects of low‐level laser therapy (LLLT) on the nuclear factor (NF)‐κB signaling pathway in traumatized muscle. Lasers Surg Med. 2006;38(7):704–713. doi: 10.1002/lsm.20371.
  • Nourian Dehkordi A, Mirahmadi Babaheydari F, Chehelgerdi M, et al. Skin tissue engineering: wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res Ther. 2019;10(1):111. doi: 10.1186/s13287-019-1212-2.
  • Mary D. Laser tissue repair, improving quality of life. Department of anatomy and cell biology UMDS medical and dental schools. London. Nursing in Practice. 2003;13(5):1.
  • Fathabadie FF, Bayat M, Amini A, et al. Effects of pulsed infra-red low level-laser irradiation on mast cells number and degranulation in open skin wound healing of healthy and streptozotocin-induced diabetic rats. J Cosmet Laser Ther. 2013;15(6):294–304. doi: 10.3109/14764172.2013.764435.
  • Lopes NN, Plapler H, Lalla RV, et al. Effects of low-level laser therapy on collagen expression and neutrophil infiltrate in 5-fluorouracil-induced oral mucositis in hamsters. Lasers Surg Med. 2010;42(6):546–552. doi: 10.1002/lsm.20920.
  • de Medeiros ML, Araújo-Filho I, da Silva EMN, et al. Effect of low-level laser therapy on angiogenesis and matrix metalloproteinase-2 immunoexpression in wound repair. Lasers Med Sci. 2017;32(1):35–43. doi: 10.1007/s10103-016-2080-y.
  • Bjordal JM, Bensadoun RJ, Tunèr J, et al. A systematic review with meta-analysis of the effect of low-level laser therapy (LLLT) in cancer therapy-induced oral mucositis. Support Care Cancer. 2011;19(8):1069–1077. doi: 10.1007/s00520-011-1202-0.
  • Correa F, Lopes Martins RA, Correa JC, et al. Low-level laser therapy (GaAs lambda = 904 nm) reduces inflammatory cell migration in mice with lipopolysaccharide-induced peritonitis. Photomed Laser Surg. 2007;25(4):245–249. doi: 10.1089/pho.2007.2079.
  • Albertini R, Aimbire FSC, Correa FI, et al. Effects of different protocol doses of low power gallium–aluminum–arsenate (Ga–Al–as) laser radiation (650 nm) on carrageenan induced rat paw oedema. J Photochem Photobiol B. 2004;74(2-3):101–107. doi: 10.1016/j.jphotobiol.2004.03.002.
  • Bortone F, Santos HA, Albertini R, et al. Low level laser therapy modulates kinin receptors mRNA expression in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation. Int Immunopharmacol . 2008;8(2):206–210. doi: 10.1016/j.intimp.2007.09.004.
  • Albertini R, Villaverde AB, Aimbire F, et al. Cytokine mRNA expression is decreased in the subplantar muscle of rat paw subjected to carrageenan-induced inflammation after low-level laser therapy. Photomed Laser Surg . 2008;26(1):19–24. doi: 10.1089/pho.2007.2119.
  • Meneguzzo DT, Lopes LA, Pallota R, et al. Prevention and treatment of mice paw edema by near-infrared low-level laser therapy on lymph nodes. Lasers Med Sci. 2013;28(3):973–980. doi: 10.1007/s10103-012-1163-7.
  • Joensen J, Gjerdet NR, Hummelsund S, et al. An experimental study of low-level laser therapy in rat achilles tendon injury. Lasers Med Sci. 2012;27(1):103–111. doi: 10.1007/s10103-011-0925-y.
  • Al-Watban FAH, Delgado GD. Burn healing with a diode laser: 670 nm at different doses as compared to a placebo group. Photomed Laser Surg . 2005;23(3):245–250. doi: 10.1089/pho.2005.23.245.
  • Garcia VG, de Lima MA, Okamoto T, et al. Effect of photodynamic therapy on the healing of cutaneous third-degree-burn: histological study in rats. Lasers Med Sci. 2010;25(2):221–228. doi: 10.1007/s10103-009-0694-z.
  • Iordanou P, Lykoudis EG, Athanasiou A, et al. The effect of visible and infrared polarized light on the healing process full-thickness skin wounds: an experimental study. Photomed Laser Surg. 2009;27(2):261–267. doi: 10.1089/pho.2008.2237.[6]
  • Schindl A, Schindl M, Pernerstofer-Schon H, et al. Low-intensity laser therapy: a review. J Invest Med . 2000;48:312–326.
  • Friedmann H, Lubart R, Laulicht I, et al. A possible explanation of laser-induced stimulation and damage of cell cultures. J Photochem Photobiol B. 1991;11(1):87–91.
  • Prabhu V, Rao BSS, Rao ACK, et al. Photobiomodulation invigorating collagen deposition, proliferating cell nuclear antigen and Ki67 expression during dermal wound repair in mice. Lasers Med Sci. 2022;37(1):171–180. doi: 10.1007/s10103-020-03202-z.
  • Garcia VG, Gualberto Júnior EC, Fernandes LA, et al. Adjunctive antimicrobial photodynamic treatment of experimentally induced periodontitis in rats with ovariectomy. Journal of Periodontology. 2013;84(4):556–565. doi: 10.1902/jop.2012.120163.
  • Wu YF, Chen CH, Cao Y, et al. Molecular events of cellular apoptosis and proliferation in the early tendon healing period. The Journal of Hand Surgery. 2010;35(1):2–10. doi: 10.1016/j.jhsa.2009.10.021.
  • Gupta A, Dai T, Hamblin MR. Effect of red and near-infrared wavelengths on low-level laser (light) therapy-induced healing of partial-thickness dermal abrasion in mice. Lasers Med Sci. 2014;29(1):257–265. doi: 10.1007/s10103-013-1319-0.
  • Leonidou A, Lepetsos P, Mintzas M, et al. Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opinion on Therapeutic Targets. 2018;22(4):299–318. doi: 10.1080/14728222.2018.1448062.
  • Kroncke MD, Fehsel K, Suschek C, et al. Inducible nitric oxide synthase-derived nitric oxide in gene regulation, cell death and cell survival. Int Immunopharmacol . 2001;1(8):1407–1420. doi: 10.1016/S1567-5769(01)00087-X.
  • Young S, Bolton P, Dyson M, et al. Macrophage responsiveness to light therapy. Lasers Surg Med. 1989;9(5):497–505. doi: 10.1002/lsm.1900090513.
  • Albertini R, Villaverde AB, Aimbire F, et al. Anti-inflammatory effects of low-level laser therapy (LLLT) with two different red wavelengths (660 nm and 684 nm) in carrageenan-induced rat paw edema. J Photochem Photobiol, B. 2007;89(1):50–55. doi: 10.1016/j.jphotobiol.2007.08.005.[7]
  • Cullell-Dalmau M, Otero-Viñas M, Ferrer-Solà M, et al. A toolkit for the quantitative evaluation of chronic wounds evolution for early detection of non-healing wounds. Journal of Tissue Viability. 2021;30(2):161–167. doi: 10.1016/j.jtv.2021.02.009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.