60
Views
1
CrossRef citations to date
0
Altmetric
Research Article

HOW BACTERIAL TOXINS PENETRATE THE INTESTINAL EPITHELIAL BARRIER: STRATEGIES TAKEN BY CHOLERA TOXIN AND BOTULINUM PROGENITOR TOXIN

Pages 47-59 | Published online: 11 Oct 2008

References

  • Arndt J. W., Gu J., Jaroszewski L., Schwarzenbacher R., Hanson M. A., Lebeda F. J., Stevens R. C. The structure of the neurotoxin-associated protein HA33/A from Clostridium botulinum suggests a reoccurring beta-trefoil fold in the progenitor toxin complex. J. Mol. Biol. 2005; 346(4)1083–1093, [PUBMED], [INFOTRIEVE], [CSA]
  • Ellgaard L., Helenius A. Quality control in the endoplasmic reticulum. Nat. Rev. Mol. Cell. Biol. 2003; 4(3)181–191, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Fujinaga Y., Inoue K., Watanabe S., Yokota K., Hirai Y., Nagamachi E., Oguma K. The haemagglutinin of Clostridium botulinum type C progenitor toxin plays an essential role in binding of toxin to the epithelial cells of guinea pig small intestine, leading to the efficient absorption of the toxin. Microbiology 1997; 143(Pt 12)3841–3847, [PUBMED], [INFOTRIEVE], [CSA]
  • Fujinaga Y., Inoue K., Nomura T., Sasaki J., Marvaud J. C., Popoff M. R., Kozaki S., Oguma K. Identification and characterization of functional subunits of Clostridium botulinum type A progenitor toxin involved in binding to intestinal microvilli and erythrocytes. FEBS Lett. 2000; 467(2–3)179–183, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Fujinaga Y., Wolf A. A., Rodighiero C., Wheeler H., Tsai B., Allen L., Jobling M. G., Rapoport T., Holmes R. K., Lencer W. I. Gangliosides that associate with lipid rafts mediate transport of cholera and related toxins from the plasma membrane to endoplasmic reticulm. Mol. Biol. Cell. 2003; 14(12)4783–4793, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Fujinaga Y., Inoue K., Watarai S., Sakaguchi Y., Arimitsu H., Lee J., Jin Y., Matsumura T., Kabumoto Y., Watanabe T., Ohyama T., Nishikawa A., Oguma K. Molecular characterization of binding subcomponents of Clostridium botulinum type C progenitor toxin for intestinal epithelial cells and erythrocytes. Microbiology 2004; 150(Pt 5)1529–1538, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Hazes B., Read R. J. A mosquitocidal toxin with a ricin-like cell-binding domain. Nat. Struct. Biol. 1995; 2(5)358–359, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Hazes B., Read R. J. Accumulating evidence suggests that several AB-toxins subvert the endoplasmic reticulum-associated protein degradation pathway to enter target cells. Biochemistry 1997; 36(37)11051–11054, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Inoue K., Fujinaga Y., Watanabe T., Ohyama T., Takeshi K., Moriishi K., Nakajima H., Oguma K. Molecular composition of Clostridium botulinum type A progenitor toxins. Infect. Immun. 1996; 64(5)1589–1594, [PUBMED], [INFOTRIEVE], [CSA]
  • Inoue K., Fujinaga Y., Honke K., Arimitsu H., Mahmut N., Sakaguchi Y., Ohyama T., Watanabe T., Oguma K. Clostridium botulinum type A haemagglutinin-positive progenitor toxin (HA(+)-PTX) binds to oligosaccharides containing Gal beta1-4GlcNAc through one subcomponent of haemagglutinin (HA1). Microbiology 2001; 147(Pt 4)811–819, [PUBMED], [INFOTRIEVE], [CSA]
  • Inoue K., Sobhany M., Transue T. R., Oguma K., Pedersen L. C., Negishi M. Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology 2003; 149(Pt 12)3361–3370, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kojima S., Eguchi H., Ookawara T., Fujiwara N., Yasuda J., Nakagawa K., Yamamura T., Suzuki K. Clostridium botulinum type A progenitor toxin binds to Intestine-407 cells via N-acetyllactosamine moiety. Biochem. Biophys. Res. Commun. 2005; 331(2)571–576, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kolter T., Proia R. L., Sandhoff K. Combinatorial ganglioside biosynthesis. J. Biol. Chem. 2002; 277(29)25859–25862, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Kouguchi H., Watanabe T., Sagane Y., Sunagawa H., Ohyama T. In vitro reconstitution of the Clostridium botulinum type D progenitor toxin. J. Biol. Chem. 2002; 277(4)2650–2656, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lacy D. B., Tepp W., Cohen A. C., DasGupta B. R., Stevens R. C. Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat. Struct. Biol. 1998; 5(10)898–902, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lencer W. I., Constable C., Moe S., Jobling M. G., Webb H. M., Ruston S., Madara J. L., Hirst T. R., Holmes R. K. Targeting of cholera toxin and Escherichia coli heat labile toxin in polarized epithelia: role of COOH-terminal KDEL. J. Cell. Biol. 1995; 131(4)951–962, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Lencer W. I., Tsai B. The intracellular voyage of cholera toxin: going retro. Trends Biochem. Sci. 2003; 28(12)639–645, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Maksymowych A. B., Simpson L. L. Binding and transcytosis of botulinum neurotoxin by polarized human colon carcinoma cells. J. Biol. Chem. 1998; 273(34)21950–21957, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Matlack K. E., Mothes W., Rapoport T. A. Protein translocation: tunnel vision. Cell 1998; 92(3)381–390, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Merritt E. A., Sarfaty S., van den Akker F., L'Hoir C., Martial J. A., Hol W. G. Crystal structure of cholera toxin B-pentamer bound to receptor GM1 pentasaccharide. Protein Sci. 1994; 3(2)166–175, [PUBMED], [INFOTRIEVE], [CSA]
  • Minton N. P. Molecular genetics of clostridial neurotoxins. Curr. Top Microbiol. Immunol. 1995; 195: 161–194, [PUBMED], [INFOTRIEVE], [CSA]
  • Mutoh S., Kouguchi H., Sagane Y., Suzuki T., Hasegawa K., Watanabe T., Ohyama T. Complete subunit structure of the Clostridium botulinum type D toxin complex via intermediate assembly with nontoxic components. Biochemistry 2003; 42(37)10991–10997, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Nishikawa A., Uotsu N., Arimitsu H., Lee J. C., Miura Y., Fujinaga Y., Nakada H., Watanabe T., Ohyama T., Sakano Y., Oguma K. The receptor and transporter for internalization of Clostridium botulinum type C progenitor toxin into HT-29 cells. Biochem. Biophys. Res. Commun. 2004; 319(2)327–333, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Oguma K., Iida H., Shiozaki M., Inoue K. Antigenicity of converting phages obtained from Clostridium botulinum types C and D. Infect. Immun. 1976; 13(3)855–860, [PUBMED], [INFOTRIEVE], [CSA]
  • Oguma K., Inoue K., Fujinaga Y., Yokota K., Watanabe T., Ohyama T., Takeshi K., Inoue K. Structure and function of Clostridium botulinum progenitor toxin. J. Toxicol-Toxin Reviews 1999; 18(1)17–34, [CSA]
  • Ohishi I., Sugii S., Sakaguchi G. Oral toxicities of Clostridium botulinum toxins in response to molecular size. Infect. Immun. 1977; 16(1)107–109, [PUBMED], [INFOTRIEVE], [CSA]
  • Ohishi I., Sakaguchi G. Oral toxicities of Clostridium botulinum type C and D toxins of different molecular sizes. Infect. Immun. 1980; 28(2)303–309, [PUBMED], [INFOTRIEVE], [CSA]
  • Orlandi P. A. Protein-disulfide isomerase-mediated reduction of the A subunit of cholera toxin in a human intestinal cell line. J. Biol. Chem. 1997; 272(7)4591–4599, [PUBMED], [INFOTRIEVE], [CSA]
  • Orlandi P. A., Fishman P. H. Filipin-dependent inhibition of cholera toxin: evidence for toxin internalization and activation through caveolae-like domains. J. Cell. Biol. 1998; 141(4)905–915, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Ponting C. P., Russell R. B. Identification of distant homologues of fibroblast growth factors suggests a common ancestor for all beta-trefoil proteins. J. Mol. Biol. 2000; 302(5)1041–1047, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Rodighiero C., Tsai B., Rapoport T. A., Lencer W. I. Role of ubiquitination in retro-translocation of cholera toxin and escape of cytosolic degradation. EMBO Rep. 2002; 3(12)1222–1227, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Sagane Y., Kouguchi H., Watanabe T., Sunagawa H., Inoue K., Fujinaga Y., Oguma K., Ohyama T. Role of C-terminal region of HA-33 component of botulinum toxin in hemagglutination. Biochem. Biophys. Res. Commun. 2001; 288(3)650–657, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Sakaguchi G., Kosaki S., Ohishi I. Structure and Function of Botulinum Toxins. Bacterial Protein Toxins. Academic Press, London 1984; 435–443
  • Sandvig K., van Deurs B. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 2002; 529(1)49–53, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Schiavo G., Matteoli M., Montecucco C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000; 80(2)717–766, [PUBMED], [INFOTRIEVE], [CSA]
  • Schmitz A., Herrgen H., Winkeler A., Herzog V. Cholera toxin is exported from microsomes by the Sec61p complex. J. Cell. Biol. 2000; 148(6)1203–1212, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Sharma S. K., Singh B. R. Enhancement of the endopeptidase activity of purified botulinum neurotoxins A and E by an isolated component of the native neurotoxin associated proteins. Biochemistry 2004; 43(16)4791–4798, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Spangler B. D. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol. Rev. 1992; 56(4)622–647, [PUBMED], [INFOTRIEVE], [CSA]
  • Suzuki T., Watanabe T., Mutoh S., Hasegawa K., Kouguchi H., Sagane Y., Fujinaga Y., Oguma K., Ohyama T. Characterization of the interaction between subunits of the botulinum toxin complex produced by serotype D through tryptic susceptibility of the isolated components and complex forms. Microbiology 2005; 151(Pt 5)1475–1483, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Swaminathan S., Eswaramoorthy S. Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat. Struct. Biol. 2000; 7(8)693–699, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Tsai B., Rodighiero C., Lencer W. I., Rapoport T. A. Protein disulfide isomerase acts as a redox-dependent chaperone to unfold cholera toxin. Cell. 2001; 104(6)937–948, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Tsai B., Ye Y., Rapoport T. A. Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat. Rev. Mol. Cell. Biol. 2002; 3(4)246–255, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Tsai B., Gilbert J. M., Stehle T., Lencer W., Benjamin T. L., Rapoport T. A. Gangliosides are receptors for murine polyoma virus and SV40. EMBO J. 2003; 22(17)4346–4355, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Wolf A. A., Jobling M. G., Wimer-Mackin S., Ferguson-Maltzman M., Madara J. L., Holmes R. K., Lencer W. I. Ganglioside structure dictates signal transduction by cholera toxin and association with caveolae-like membrane domains in polarized epithelia. J. Cell. Biol. 1998; 141(4)917–927, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Wolf A. A., Fujinaga Y., Lencer W. I. Uncoupling of the cholera toxin-G(M1) ganglioside receptor complex from endocytosis, retrograde Golgi trafficking, and downstream signal transduction by depletion of membrane cholesterol. J. Biol. Chem. 2002; 277(18)16249–16256, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]
  • Zhang R. G., Scott D. L., Westbrook M. L., Nance S., Spangler B. D., Shipley G. G., Westbrook E. M. The three-dimensional crystal structure of cholera toxin. J. Mol. Biol. 1995; 251(4)563–573, [PUBMED], [INFOTRIEVE], [CROSSREF], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.