104
Views
3
CrossRef citations to date
0
Altmetric
Research Article

STRUCTURE FUNCTION RELATIONSHIPS OF COBROTOXIN FROM NAJA NAJA ATRA

&
Pages 99-122 | Published online: 11 Oct 2008

References

  • Ackermann E. J., Ang E. T. H., Kanter J. R., Tsinelny I., Taylor P. Identification of pair wise interactions in the alpha-neurotoxin nicotinic acetylcholine receptor complex through double mutant cycles. J. Biol. Chem. 1998; 273: 10958–10964
  • Ackermann E. J., Taylor P. Non-identity of the alpha-neurotoxin binding sites on the nicotinic acetylcholine receptor revealed by modification in alpha-neurotoxin and receptor structure. Biochemistry 1997; 36: 12836–12844
  • Antil-Delbeke S., Servent D., Menez A. Variability among the sites by which curaremimetic toxins bind to Torpedo acetylcholine receptor, as revealed by identification of the functional residues of alpha-cobratoxin. J. Biol. Chem. 1999; 274: 34851–34858
  • Antil-Delbeke S., Gaillard C., Tamiya T., Corringer P. J., Changeux J. P., Servent D., Menez A. Molecular determinants by which a long chain toxin from snake venom interacts with the neuronal alpha 7-nicotinic acetylcholine receptor. J. Biol. Chem. 2000; 275: 29594–29601
  • Arias H. R. Localization of agonist and competitive antagonist binding sites on nicotinic acetylcholine receptors. Neurochem. Int. 2000; 36: 595–645
  • Basus V. T., Song G., Hawort E. NMR solution structure of an α-bungarotoxin/nicotinic receptor peptide complex. Biochemistry 1993; 32: 12290–12298
  • Bhaskaran R., Huang C. C., Chang D. K., Yu C. Cardiotoxin III from Taiwan cobra (Naja naja atra)—determination of structure in solution and comparison with short neurotoxins. J. Mol. Biol. 1994a; 235: 1291–1301
  • Bhaskaran R., Huang C.-C., Tsai Y.-C., Jayaraman G., Chang D.-K., Yu. C. Cardiotoxin II from Taiwan cobra venom, Naja naja atra-structure in solution and comparision among homologous cardiotoxins. J. Biol. Chem. 1994b; 269: 23500–23508
  • Bhaskaran R., Yu C., Yang C. C. Solution structure and functional implications of toxins from Taiwan cobra venom, Naja naja atra. J. Protein Chem. 1994c; 13: 503–504
  • Bourne Y., Talley T. T., Hansen S. B., Taylor P., Marchot P. Crystal structure of Cbtx-AChBP complex reveals essential interactions between snake-neurotoxins and nicotinic receptors. EMBO 2005; 24: 1512–1522
  • Brejc K., Van Dijk W. J., Klaassen R. V., Schuurmans M., Smit A. B., Sixma T. K. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature 2001; 411: 269–276
  • Brown L. R., Wuthrich K. Nuclear magenetic resonance solution structure of the α-neurotoxin from black mamba (Dendroaspis polylepis polylepis). J. Mol. Biol. 1992; 227: 1118–1135
  • Chang C. C., Yang C. C., Nakai K., Hayashi K. Studies on the status of free amino and carboxyl groups in cobrotoxin. Biochim. BioPhys. Acta 1971; 251: 334–344
  • Chang L. S., Chou Y. C., Lin S. R., Wu B. N., Lin J., Hong E., Sun Y. J., Hsiao C. D. A novel neurotoxin, cobrotoxin b, from Naja naja atra (Taiwan cobra) venom: purification, characterization, and gene organization. J. Biochem. (Tokyo) 1997; 122: 1252–1259
  • Chang L. S., Lin R., Chen K. C., Chang C. C. Enrichment of antibodies against the C-terminus of Taiwan cobra cobrotoxin using dimeric glutaraldehyde-modified toxin as an immunogen. Toxicon 2003; 41: 81–186
  • Chang L. S., Lin R., Yang C. C. Refolding of Taiwan cobra neurotoxin: intramolecular cross-link affects its refolding reaction. Arch. Biochem. Biophys. 2001; 387: 289–296
  • Chang L. S., Lin S. R., Chang C. C. Unfolding/folding studies on cobrotoxin from Taiwan cobra venom: pH and GSH/GSSG govern disulfide isomerization at the C-terminus. Arch. Biochem. Biophys. 1998; 354: 1–8
  • Chang L. S., Lin S. R., Chang C. C., Yang C. C. Disulfide isomerization within the C-Terminus of Cobrotoxin decelerates by thiol compounds and trinitrophenylation, but accelerates by modification of carboxyl groups. Arch. Biochem. Biophys. 1998; 358: 164–170
  • Changeux J. P., Edelstein S. J. Allosteric receptors after 30 years. Neuron 1998; 21: 959–980
  • Changeux J. P., Kasai M., Lee C. Y. Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc. Natl. Acad. Sci. USA 1970; 67: 1241–1247
  • Cheng Y., Meng Q. X., Wang W. Y., Wang J. F. Structure–function relationship of three neurotoxins from the venom of Naja kaouthia: a comparison between the NMR-derived structure of NT2 with its homologues, NT1 and NT3. Biochim. Biophys. Acta 2002; 1594: 353–363
  • Chicheportiche R., Vincent J. P., Kopeyan C., Schweitz H., Lazdunski M. Structure–function relationships in the binding of snake neurotoxins to the Torpedo membrane receptors. Biochemistry 1975; 14: 2081–2091
  • Corfield P., Lee T. J., Low B. W. The crystal structure of erabutoxin a at 2.0 Å resolution. J. Biol. Chem 1989; 264: 9239–9242
  • Corringer P. J., Le Novere N., Changeux J. P. Nicotinic receptor at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 2000; 40: 431–458
  • Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake venoms. CRC Cric. Rev. Biochem. 1983; 14: 113–171
  • Fruchart-Gaillard C., Gilquin B., Antil-Delbeke S., Le-Novere N., Tamiya T., Corringer P. J., Changeux J. P., Menez A., Servent D. Experimentally based model of a complex between a snake toxin and the alpha 7 nicotinic receptor. Proc. Natl. Acad. Sci. USA 2002; 99: 3216–3221
  • Golovanov A. P., Lomize A. L., Arseniev A. S., Utkin Y. N., Tsetlin V. I. 1H NMR study of the spatial structure of neurotoxin II from Naja naja oxiana. J. Biol. Chem. 1993; 213: 1213–1223
  • Grutter T., Changeux J. P. Nicotinic receptors in wonderland. Trends Biochem. Sci. 2001; 26: 459–463
  • Hajduk P. J., Meadows R. P., Fesik S. W. NMR-based screening in drug discovery. Q. Rev. Biophys. 1999; 32: 211–240
  • Harvey A. L. Cardiotoxins from cobra venom: Possible mechanism of action. J. Toxicol. Toxin Rev. 1985; 40: 41–69
  • Harvey A. L. Toxins leading to medicines. Perspectives in Molecular Toxicology, A. Menez. John Willey & Sons, ChichesterEngland 2002a; 377–382
  • Harvey A. L. Toxins ‘R’ Us: more pharmacological tools from nature's superstore. Trends Pharmacol. Sci. 2002b; 23: 201–203
  • Harvey A. L., Bradley K. N., Cochran S. A. What can toxins tell us for drug discovery?. Toxicon 1998; 36: 1635–1640
  • Hatanaka H. M., Oka M., Khoda D., Tate S., Suda A., Tamiya N., Inagaki F. Tertiary structure of erabutoxin-B in aqueous solution as elucidated by 2-dimentional nuclear-magnetic-resonance. J. Mol. Biol. 1994; 240: 155–166
  • Heeschen C., Weis M., Aicher A., Dimmeler S., Cooke J. P. A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. J. Clin. Invest. 2002; 110: 527–536
  • Hsieh H.-C., Kumar T. K. S., Yu C. Cloning, overexpression and characterization of cobrotoxin. Biochim. Biophys. Acta 2004; 320: 1374–1381
  • Karlin A. Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 2002; 3: 102–114
  • Karlsson E., Pongsawasdi P. Purification of two phospholipase A isoenzymes with anticoagulant activity from the venom of the cobra. Naja naja siamensis, Toxicon. 1980; 18(4): 409–419
  • Kumar T. K. S., Srisailam S., Vethanayagam R. R., Yu C. Understanding the structure and functional relationship of snake venom cardiotoxins. Perspectives in Molecular Toxicology, A. Menez. John Willey & Sons, ChichesterEngland 2002; 315–325
  • Lee C. Y., Chang C. C., Chen Y. M. Reversibility of neuromuscular blockade by neurotoxins from elapid and sea snake venoms. Taiwan yi xue hui za zhi J. Formosan Med. Assoc. 1972; 71: 344–349
  • Li Y., Jiang H. L., Zhu K. J., Liu J. H., Hao Y. L. Preparation, Characterization and nasal delivery of α-cobrotoxin-loaded poly (lactic -co-glycolide)/polyanhydride microspheres. J. Control. Real 2005; 108: 10–20
  • Lindstrom J. The structure of neuronal nicotinic receptors. In: Neuronal Nicotinic Receptors. In:. Handbook of Experimental Pharmacology, F. Clementi, D. Fornassi, C. Gotti. Springer Verlag, Berlin 2000; Vol. 44: 101–162
  • Lou X., Liu Q., Tu X., Wang J., Teng M, Niu L., Schuller D. J., Huang Q., Hao Q. The atomic resolution crystal structure of atrotoxin determined by single wavelength anomalous diffraction phasing. J. Biol. Chem. 2004; 279: 39094–39104
  • Mao H., Hajduk P. J., Craig R., Bell R., Borre T., Fesik S. W. Rational design of diflunisal analogues with reduced affinity for human serum albumin. J. Am. Chem. Soc. 2001; 123: 10429–10435
  • Menez A., Servent D., Gasparini S. The binding sites of animal toxins involve two components a clue for selectivity, evolution and design of proteins?. Perspectives in Molecular Toxicology, A. Menez. John Willey & Sons, ChichesterEngland 2002; 175–200
  • Neibig R. R., Cohen J. B. Equilibrium binding of 3H-tubecurarine and 3H-acetylcholine by Torpedo postsynaptic membranes: Stoichiometry and ligand binding interactions. Biochemistry 1979; 18: 5464–5475
  • Phui Yee J. S., Gong N. L., Afifiyan F., Ma D. H., Lay P. S., Armugam A., Jeyaseelan K. Snake postsynaptic neurotoxins: gene structure, phylogeny and applications in research and therapy. Biochimie 2000; 86: 137–149
  • Rees B., Bilwaes A. Three dimensional structures of neurotoxins and cardiotoxins. Chem. Res. Toxicol. 1993; 6: 385–406
  • Rosenthal J. A., Levandoski M. M., Chang B., Potts J. F., Shi Q., -L., Hawort E. The functional role of positively charged amino acid side chains in α-bungarotoxin revealed by site-directed mutagenesis of a His-tagged recombinant α-bungarotoxin. Biochemistry 1999; 38: 7847–7855
  • Ruan K. H., Stiles B. G., Atassi M. Z. The short neurotoxin binding regions on the chain of the human and Torpedo california acetylcholine receptor. Biochem. J. 1991; 274: 849–854
  • Samson A. O., Chill J. H., Rodriguez E., Scherf T., Anglister J. NMR mapping and secondary structure determination of the major acetylcholine receptor alpha-subunit determinant interacting with alpha-bungarotoxin. Biochemistry 2001; 40: 5464–5473
  • Scherf T., Kasher R., Balass M., Fridkin M., Fuchs S., Katchalski-Katzir E. A beta-hairpin structure in a 13-mer peptide that binds alfa-bungarotoxin with high affinity and neutralizes toxicity. Proc. Natl. Acad. Sci. USA 2001; 98: 6629–6634
  • Servent D., Menez A. Snake neurotoxins that interact with nicotinic acetylcholine receptors. Handbook of Neurotoxicology, Vol 1, E. J. Massaro. Humana Press, TotowaNew Jersey 2001; 385–425
  • Servent D., Winckler-Dietrich V., Hu H. Y., Kessler P., Drevent P., Bertrand D., Menez A. J. Biol. Chem. 1997; 272: 24279–24286
  • Sher E., Giovannini F., Boot J., Lang B. Peptide neurotoxins, small cell lung carcinoma and neurological paraneoplastic syndromes. Biochime 2000; 82: 927–936
  • Sixma T. K., Smit A. B. The acetylcholine binding protein: A secreted glial protein that provides a high resolution model for the extracellular domain of pentameric ligand-gated ion channels. Ann. Rev. Biophy. Biomol. Struct. 2003; 32: 311–334
  • Smit A. B., Syed N. I., Schaap D., Minnen J., Klumpermank J, Kits J. K., Lodder H., VanderSchors R. C., Elk R., Sorgedrager B., Brejc K., Sixma T. K., Geraerts W. P. G. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature 2001; 411: 261–268
  • Spura A., Riel R. U., Freedman N. D., Agrawal S., Seto C., Hawrot E. Biotinylation of substituted cysteines in the nicotinic acetylcholine receptor reveals distinct binding modes for alpha-bungarotoxin and erabutoxin A. J. Biol. Chem. 2000; 275: 22452–22460
  • Taylor P., Molles B., Malany S., Osaka H. Toxins as probes for structure and specificity of synaptic target proteins. Perspectives in Molecular Toxicology, A. Menez. John Willey & Sons, ChichesterEngland 2002; 271–280
  • Teixeira-Clerc F., Menez A., Kessler P. How do short neurotoxins bind to muscular-type nicotinic acetylcholine receptor. J. Biol. Chem. 2002; 277: 124406–12417
  • Vulfins C. A., Krasts I. V., Utkin Y. N., Tsetlin V. I. Nicotinic receptors in Lymnaea stagnalis neurons are blocked by alpha-neurotoxins from cobra venoms. Neurosci. Lett. 2001; 309: 189–192
  • Wang H., Amella C. A., Tanovic M., Susaria S., Li J. H., Wang H., Jang H., Ulloa L., Al-Abed Y., Czura C. J., Tracey K. J. Nicotinic acetylcholine receptor 7 subunit is an essential regulator of inflammation. Nature 2003; 421: 384–388
  • Xiong Y., Wang W. Using snake venom to substitute for addictive drugs. Toxicon 1992; 30: 567–568
  • Yang C. C. Crystallization and properties of cobrotoxin from Formosan cobra venom. J. Biol. Chem. 1965; 240: 1616–1618
  • Yang C. C. The disulfide bonds of cobrotoxin and their relationship to lethality. Biochim. Biophys. Acta 1967; 133: 346–355
  • Yang C. C. Cobrotoxin interactions with Ach. In. Pharmacology., M. J. Rand, C. Raper. ElsevierBiomedical Division, Amsterdam 1987; 871
  • Yang C. C. Cobrotoxins: structure and function. J. Nat. Toxins 1999; 8: 221–233
  • Yang C. C., Yang H. J., Huang J. S. The amino acid sequence of cobrotoxin. Biochim. Biophys. Acta. 1969; 188: 65–77
  • Yang C. C., Yanf H. J., Chiu R. H. C. The position of disulfide bonds in cobrotoxin. Biochim. Biophys. Acta 1970; 214: 355–363
  • Yang C. C., Chang C. C., Liou I. F. Studies on the status of arginine residues in cobrotoxin. Biochim. BioPhys. Acta 1974; 365: 1–14
  • Yu C., Bhaskaran R., Chaung L. C., Yang C. C. Solution structure of cobrotoxin: a nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing study. Biochemistry 1993; 32: 2131–2136
  • Yu C., Lee C. S., Chaung L. C., Shei Y. R, Wang C. Y. Two dimensional NMR studies and secondary structure of cobrotoxin in aqueous solution. Eur. J. Biochem. 1990; 193: 789–799
  • Yu. C., Bhaskaran R., Yang C. C. Structure in solution of toxins from Taiwan cobra venom, Naja naja atra, derived from NMR spectra. J. Toxicol. Toxin. Rev. 1994; 13: 291–315
  • Zinn-Justin S., Roumestand C., Gilquin B., Bontems F., Menez A., Toma F. Three dimensional solution structure of curaremimetic toxin from Naja nigricollis venom: a proton NMR and molecular modeling study. Biochemistry 1992; 31: 11335–11347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.