57
Views
4
CrossRef citations to date
0
Altmetric
Research Article

EVOLUTIONARY REDUCTION OF ENZYMATIC ACTIVITIES OF SNAKE VENOM PHOSPHOLIPASES A2

Pages 123-142 | Published online: 11 Oct 2008

References

  • Bao Y., Bu P., Jin L., Wang H., Yang Q., An L. Purification, characterization and gene cloning of a novel phospholipase A2 from the venom of Agkistrodon blomhoffii ussurensis. Int. J. Biochem. Cell Biol. 2005; 37: 558–565
  • Chang C. C. Neurotoxins with phospholipase A2 activity in snake venoms. Proc Natl. Sci. Counc. Repub. China B. 1985; 9: 126–142
  • Chang W. C., Lee M. L., Lo T. B. Phospholipase A2 activity of long-chain cardiotoxins in the venom of the banded krait (Bungarus fasciatus). Toxicon 1983; 21: 163–165
  • Chen Y. H., Wang Y. M., Hseu M. J., Tsai I. H. Molecular evolution and structure-function relationships of crotoxin-like and asparagine 6-containing phospholipases A2 in pit viper venoms. Biochem. J. 2004; 381: 25–34
  • Chih Lan Hui. Pharmacological studies of venom phospholipase A2 isolated from Russell's viper on smooth muscle. National Taiwan University. 2001
  • Condrea E., Yang C.-C., Rosenberg P. Additional evidence for a lack of correlation between anticoagulant activity and phospholipid hydrolysis by snake venom phospholipases A2. ThromB. Haemost. 1982; 47: 298–307
  • Danse J. M., Gasparini S., Menez A. Molecular biology of snake venom phospholipases A2. Venom Phospholipase A2 Enzyme: Structure, Function and Mechanism, R. M. Kini. Wiley, Chichester 1997; 29–71
  • Francis B., Bdolah A., Kaiser I. I. Amino acid sequences of a heterodimeric neurotoxin from the venom of the false horned viper (Pseudocerastes fieldi). Toxicon 1995; 33: 863–874
  • Garcia F., Toyama M. H., Castro F. R., Proenca P. L., Marangoni S., Santos L. M. Crotapotin induced modification of T-lymphocyte proliferative response through interference with PGE2 synthesis. Toxicon 2003; 42: 433–437
  • Georgieva D. N., Perbandt M., Rypniewski W., Hristov K., Genov N., Betzel C. The X-ray structure of a snake venom Gln48 phospholipase A2 at 1.9 A resolution reveals anion-binding sites. Biochem. Biophys. Res. Commun. 2004; 316: 33–38
  • GelbM. H., Jain M, Hanel A. M., Berg O. G. Interfacial enzymology of glycerolipid hydrolases: lessons from secreted phospholipases A2. Ann. Rev. Biochem. 1995; 64: 653–688
  • Guillemin I., Bouchier C., Garrigues T., Wisner A., Choumet V. Sequences and structural organization of phospholipase A2 genes from Vipera aspis aspis, V. aspis zinnikeri and Vipera berus berus venom. Identification of the origin of a new viper population based on ammodytin I1 heterogeneity. Eur. J. Biochem. 2003; 70: 2697–2706
  • Gubensek F., Kordis D. Venom phospholipases A2 genes and their molecular evolution. Venom Phospholipase A2 Enzyme: Structure, Function and Mechanism, R. M. Kini. Wiley, Chichester 1997; 73–95
  • Han S. K., Edward L., Yoon T., Scott D. L., Sigler P. B., Cho W. Structural aspects of interfacial adsorption. A crystallographic and site-directed mutagenesis study of the phospholipase A2 from the venom of Agkistrodon piscivorus piscivorus. J. Biol. Chem. 1997; 272: 3573–3582
  • Hernandez-Oliveira S., Toyama M. H., Toyama D. O., Hyslop S., Rodrigues-Simioni L. Biochemical, pharmacological and structural characterization of a new PLA2 from Crotalus durissus terrificus (South American Rattlesnake) venom. Protein J. 2005; 24: 233–242
  • Inada M., Crowl R. M., Bekkers A. C. A. P. A., Verheij H., Weiss J. Determinants of the inhibitory action of purified 14-kDa phospholipases A2 on cell-free prothrombinase complex. J. Biol. Chem. 1994; 269: 26338–26343
  • Jabeen T., Singh N., Singh R. K., Ethayathulla A. S., Sharma S., Srinivasan A., Singh T. P. Crystal structure of a novel phospholipase A2 from Naja naja sagittifera with a strong anticoagulant activity. Toxicon 2005; 46: 865–875
  • Jan V., Maroun R. C., Robbe-Vincent A., De Haro L., Choumet V. Toxicity evolution of Vipera aspis aspis venom: identification and molecular modeling of a novel phospholipase A2 heterodimer neurotoxin. FEBS Lett. 2002; 527: 263–268
  • Kattah L. R., Ferraz V., Santoro M., da Silva Camargos R., Ribeiro E., Diniz C., De Lima M. E. Analysis of fatty acids released by crotoxin in rat brain synaptosomes. Toxicon 2002; 40: 43–49
  • Krizaj I., Bieber A. L., Ritonja A., Gubensek F. The primary structure of ammodytin L, a myotoxic phospholipase A2 homologue from Vipera ammodytes venom. Eur. J. Biochem. 1991; 202: 1165–1168
  • Krizaj I., Bdolah A., Gubensek F., Bencina P., Pungercar J. Protein and cDNA structures of an acidic phospholipase A2, the enzymatic part of an unusual, two-component toxin from Vipera palaestinae. Biochem. Biophys. Res. Commun. 1996; 227: 374–379
  • Kini R. M. Structure–function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon 2005; 45: 1147–1161
  • Koduri R. S., Han S. K., Othman R., Baker S. F., Molini B. J., Wilton D. C., Gelb M. H., Cho W. Mapping the interfacial binding surface of human secretory group IIa phospholipase A2. Biochemistry 1997; 36: 14325–14333
  • Komori Y., Masuda K., Nikai T., Sugihara H. Complete primary structure of the subunits of heterodimeric phospholipase A2 from Vipera a. zinnikeri venom. Arch. Biochem. Biophys. 1996; 327: 303–307
  • Kuipers O., Kerver J., van Meersbergen J., Vis R., Dijkman R., Verheij H. M., de Haas G. H. Influence of size and polarity of residue 31 in porcine pancreatic phospholipase A2 on catalytic properties. Protein Eng. 1990; 3: 599–603
  • Landucci E. C., de Castro R. C., Toyama M., Giglio J. R., MarangoniS. G., De Nucci E. A. Inflammatory oedema induced by the Lys-49 phospholipase A2 homologue piratoxin-i in the rat and rabbit. Effect of polyanions and p-bromophenacyl bromide. Biochem. Pharmacol. 2000; 59: 1289–1294
  • Lee W. H., da Silva Giotto M. T., Marangoni S., Toyama M. H., Polikarpov I., Garratt R. C. Structural basis for low catalytic activity in Lys49 phospholipases A2-a hypothesis: the crystal structure of piratoxin II complexed to fatty acid. Biochemistry 2001; 40: 28–36
  • Liu C. S., Lo T. B. Chemical studies of Bungarus fasciatus venom. J. Chinese Biochem. Soc. 1994; 23: 69–75
  • Liu C. S., Chang C. S., Leu H.L., Chen S.W., Lo T.B. The complete amino-acid sequence of a basic phospholipase A2 in the venom of Bungarus fasciatus. Biol. Chem. Hoppe. Seyler. 1988; 369: 1227–1233
  • Liu C. S., Leu H. L., Chang C. S., Chen S. W., Lo T. B. Amino acid sequence of a neutral phospholipase A2 (III) in the venom of Bungarus fasciatus. Int. J. Pept. Protein Res. 1989; 34: 257–261
  • Liu C. S., Chen J. M., Chang C. H., Chen S. W., Tsai I. H., Lu H. S., Lo T. B. Revised amino acid sequences of the three major phospholipases A2 from Bungarus fasciatus (banded krait) venom. Toxicon 1990; 28: 1457–1468
  • Liu C. S., Chen J. M., Chang C. H., Chen S. W., Teng C. M., Tsai I. H. The amino acid sequence and properties of an edema-inducing Lys-49 phospholipase A2 homolog from the venom of Trimeresurus mucrosquamatus. Biochim. Biophys. Acta 1991; 1077: 362–370
  • Liu C. S., Kuo P. Y., Chen J. M., Chen S. W., Chang C. H., Tseng C. C., Tzeng M. C., Lo T. B. Primary structure of an inactive mutant of phospholipase A2 in the venom of Bungarus fasciatus (banded krait). J. Biochem. (Tokyo) 1992; 112: 707–713
  • Lomonte B., Yamileth A., Caldero N. L. An overview of lysine-49 phospholipase A2 myotoxins from crotalid snake venoms and their structural determinants of myotoxic action. Toxicon 2003; 42: 885–901
  • Magnusson A. O., Rotticci-Mulder J. C., Santagostino A., Hult K. Creating space for large secondary alcohols by rational redesign of Candida antarctica lipase B. Chembiochem. 2005; 6: 1051–1056
  • Mora R., Maldonado A., Valverde B., Gutiérre J. M. Calcium plays a key role in the effects induced by a snake venom Lys49 phospholipase A2 homologue on a lymphoblastoid cell line. Toxicon 2006; 46: 75–86
  • Mounier C. M., Luchetta P., Lecut C., Koduri R. S., Faure G., Lambeau G., Valentin E., Singer A., Ghomashchi F., Beguin S., Gelb M. H., Bon C. Basic residues of human group IIA phospholipase A2 are important for binding to factor Xa and prothrombinase inhibition comparison with other mammalian secreted phospholipases A2. Eur. J. Biochem. 2000; 267: 4960–4969
  • Murakami M. T., Gabdoulkhakov A., Genov N., Cintra A. C. O., Betzel C., Arni R. K. Insights into metal ion binding in phospholipases A2: ultra high-resolution crystal structures of an acidic phospholipase A2 in the Ca2+ free and bound states Biochimie. 2006; 88: 543–549
  • Nishida M., Terashima M., Tamiya N. Amino acid sequences of phospholipases A, from the venom of an Australian elapid snake (king brown snake, Pseudechis australis. Toxicon 1985; 23: 87–104
  • Pan Y. H., Yu B. Z., Berg O. G., Jain M. K., Bahnson B. J. Crystal structure of phospholipase A2 complex with the hydrolysis products of platelet activating factor: Equilibrium binding of fatty acid and lysophospholipid-ether at the active site may be mutually exclusive. Biochemistry 2002; 41: 14790–14800
  • Perbandt M., Tsai I. H., Banumathi S., Rajashankar K. R., Georgieva D., Kalkura N., Singh T. P., Genove N., Betzel Ch. Structure of the heterodimeric neurotoxic complex viperotoxin F (RV4/RV7) from the venom of Vipera russelli formosensis at 1.9 A resolution. Acta Cryst. 2003; D59: 1679–1687
  • Polgar J., Magnenat E. M., Peitsch M. C., Wells T. N., Clemetson K. J. Asp-49 is not an absolute prerequisite for the enzymic activity of low-M(r) phospholipases A2: purification, characterization and computer modelling of an enzymically active Ser-49 phospholipase A2, ecarpholin S, from the venom of Echis carinatus sochureki (saw-scaled viper). Biochem. J. 1996; 319: 961–968
  • Prijatelj P., Charnay M., Ivanovski G., Jenko Z., Pungerčar J., Križaj I., Faure G. The C-terminal and β-wing regions of ammodytoxin A, a neurotoxic phospholipase A2 from Vipera ammodytes ammodytes, are critical for binding to factor Xa and for anticoagulant effect. Biochimie 2006; 88: 69–76
  • Qin S., Pande A. H., Nemec K. N., He X., Tatulian S. A. Evidence for the regulatory role of the N-terminal helix of secretory phospholipase A2 from studies on native and chimeric proteins. J. Biol. Chem. 2005; 280: 36773–36883
  • Qi Y. H., Gong H., Wieland S. J., Fletcher J. E., Conner G. E., Jiang M. S. Effect of a phospholipase A2 with cardiotoxin-like properties, from Bungarus fasciatus snake venom, on calcium-modulated potassium currents. Toxicon 1989; 27: 1339–1349
  • Renetseder R., Brunin S., Dijkstra B. W., Drenth J., Sigler P. B. A comparison of the crystal structures of phospholipase A2 from bovine pancreas and Crotales atrox venom. J. Biol. Chem. 1985; 260: 11627–11634
  • Rigoni M., Caccin P., Gschmeissner S., Koster G., Postle A. D., Rossetto S. G., Montecucco C. Neuroscience: Equivalent effects of snake phospholipase A2 neurotoxins and lysophospholipid -fatty acid mixtures. Science 2005; 310: 1678–1680
  • Rosenberg P. Pitfalls to avoid in the study of correlations between enzymatic activity and pharmacological properties of phospholipases A2 enzymes. Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, R. M. Kini. Wiley, Chichester 1997; 155–184
  • Rojnuckarin P., Muanpasitporn C. C., Arpijuntarangkoon L. J., Intragumtornchai T. Molecular cloning of novel serine proteases and phospholipases A2 from green pit viper (Trimeresurus albolabris) venom gland cDNA library. Toxicon. 2006; 47: 279–287
  • Schmidt J. J., Middlebrook J. L. Purification, sequencing and characterization of pseudexin phospholipases A2 from Pseudechis porphyriacus (Australian red-bellied black snake). Toxicon. 1989; 27: 805–818
  • Scott D. L. Phospholipase A2: structure and catalytic properties. Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, R. M. Kini. Wiley, Chichester 1997; 97–128
  • Six D. A., Dennis E. A. The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim. Biophys. Acta 200; 1488: 1–19
  • ShiauLin S. Y., Huang M. C., Lee C. Y. A study of cardiotoxic principles from the venom of Bungarus fasciatus (Schneider). Toxicon. 1975; 13: 189–192
  • Singha G., Gourinatha S., Sarvanana K., Sharmaa S., Bhanumathib S., Betzel Ch., Yadava S., Srinivasana A., Singh T. P. Crystal structure of a carbohydrate induced homodimer of phospholipase A2 from Bungarus caeruleus at 2.1 A resolution. J. Struct. Biol. 2005; 149: 264–272
  • Takasaki C., Kimura S., Kokubun Y., Tamiya N. Isolation, properties and amino acid sequences of a phospholipase A2 and its homologue without activity from the venom of a sea snake, Laticauda colubrina, from the Solomon Islands. Biochem. J. 1988; 253: 869–875
  • Takasaki C., Yutani F., Kajiyashiki T. Amino acid sequences of eight phospholipases A2 from the venom of Australian king brown snake, Pseudechis australis. Toxicon. 1990; 28: 329–339
  • Thuren T., Tulkki A. -P., Virtanen J. A., Kinnunen P. K. J. Triggering of the activity of phospholipase A2 by an electric field. Biochemistry 1987; 26: 4907–4910
  • Thunnissen M. M. G. M., Franken P. A., de Haas G. H., Drenth J., Kalk K. H., Verheij H. M., Dijkstra B. W. Site-directed mutagenesis and X-ray crystallography of two phospholipase A2 mutants: Y52 F and Y73 F. Protein Eng. 1992; 5: 597–603
  • Triggiani M., Granata F., Giannattasio G., Marone G. Secretory phospholipases A2 in inflammatory and allergic diseases: Not just enzymes. J. Allergy Clin. Immunol. 2005; 116: 1000–1006
  • Tsai I. H., Tsai H. Y., Saha Y., Gomes A. Sequences, geographic variations and molecular phylogeny of venom phospholipases and three fingers toxins of eastern India Bungarus fasciatus and kinetic analyses of its Pro31 phospholipases A2. FEBS J. 2007; 274: 512–525
  • Tsai I. H., Chen Y. H., Wang Y. M. Comparative proteomics and subtyping of venom phospholipases A2 and disintegrins of Protobothrops pit vipers. BBA-Prot. and Proteom. 2004; 1702: 111–119
  • Tsai I. H., Chen Y. H., Wang Y. M., Tu M. C., Tu A. T. Purification, sequencing and phylogenetic analyses of novel Lys-49 Phospholipases A2 from the venoms of rattlesnakes and other pit vipers. Arch. Biochem. Biophys 2001; 394: 236–244
  • Tsai I. H., Wang Y. M., Au L. C., Ko T. P., Chen Y. H., Chu Y. F. Phospholipases A2 from Calloselasma rhodostoma venom gland: cloning and sequencing of ten of the cDNAs, three-dimensional-modelling and chemical modification of the major isozyme. Eur. J. Biochem. 2000; 267: 6684–6691
  • Tsai I. H., Lu P. Y., Su Y. C. Two types of Russell's viper revealed by variation in phospholipases A2 from venom of the sub-species. Toxicon. 1996; 34: 99–109
  • Tsai I. H., Wang Y. M., Chen Y. H., Tsai T. S., Tu M. C. Venom phospholipases A2 of bamboo viper (Trimeresurus stejnegeri): molecular characterization, geographic variations and evidence of multiple ancestries. Biochem. J. 2004; 377: 215–223
  • Tzeng M. C. Interaction of presynaptically toxic phospholipase A2 with membrane receptors and other binding sites. J. Toxicol. 1993; 12: 1–62
  • Van den Berg B., Tessari M., Boelens R., Dijkman R., de Haas G. H., Kaptein R., Verheij H. M. NMR structures of phospholipase A2 reveal conformational changes during interfacial activation. Nat. Struct. Biol. 1995a; 2: 402–406
  • Van Den Berg B, Tessari M., Boelens R., Dijkman R., Kaptein R., de Haas G. H., Verheij H. M. Solution structure of porcine pancreatic phospholipase A2 complexed with micelles and a competitive inhibitor. J. Biomol. NMR 1995b; 5: 110–121
  • Wang Y. M., Pong H. F., Tsai I. H. Unusual phospholipases A2 in the venom of two primitive tree viper Trimeresurus puniceus and Trimeresurus boneenesis. Eur. J. Biochem. 2005; 272: 3015–3025
  • Wang Y. M., Wang J. H., Pan F. M., Tsai I. H. Lys-49 phospholipase A2 homologs from venoms of Deinagkistrodon acutus and T. mucrosquamatus have identical protein sequence. Toxicon. 1996; 34: 485–489
  • Wang Y. M., Liew Y. F., Chang K. Y., Tsai I. H. Purification and characterization of the venom phospholipases A2 from four monotypic Crotalinae snakes. J. Nat. Toxins 1999; 8: 331–340
  • Wang Y. M., Lu P. J., Ho C. L., Tsai I. H. Characterization and molecular cloning of neurotoxic phospholipases from Taiwan viper (Vipera russelli formosensis). Eur. J. Biochem. 1992; 209: 635–641
  • Ward R. J., de Azevedo W. F., Jr, Arni R. K. At the interface: crystal structures of phospholipases A2. Toxicon. 1998; 36: 1623–1633
  • White S. P., Scott D. L., Otwinowski Z., Gelb M. H., Sigler P. B. Crystal structure of cobra-venom phospholipase A2 in a complex with a transition-state analogue. Science 1990; 250: 1560–1563
  • Wei J. F., Wei X. L., Chen Q. Y., Huang T., Qiao L. Y., Wang W. Y., Xiong Y. L., He S. H. N49 phospholipase A2, a unique subgroup of snake venom group II phospholipase A2. Biochim. Biophys. Acta 2006; 1760: 462–477
  • Wooldridge B. J., Pineda G., Banuelas-Ornelas J. J., Dagda R. K., Gasanov S. E., Rael E. D., Lieb C. S. Mojave rattlesnakes (Crotalus scutulatus scutulatus) lacking the acidic subunit DNA sequence lack Mojave toxin in their venom. Comp. Biochem. Physiol. 2001; 130B: 169–179
  • Xu K. Membrane active polypeptides from venom of Bungarus fasciatus. Biomed. Res. 1986; 7(suppl.)89–93
  • Yang C. C. Chemical modification and fuctional sites of phospholipases A2. Venom Phospholipase A2 Enzymes: Structure, Function and Mechanism, R. M. Kini. Wiley, Chichester 1997; 155–184
  • Yu B. Z., Berg O. G., Jain M. K. The divalent cation is obligatory for the binding of ligands to the catalytic site of secreted phospholipase A2. Biochemistry 1993; 32: 6485–6492
  • Yu B. Z., Janssen M. J. W., Verheij H. M., Jain M. K. Control of the chemical step by leucine-31 of pancreatic phospholipase A2. Biochemistry 2000; 39: 5702–5711
  • Zhong X., Jiao H., Fan L., Zhou Y. Functional important residues for the anticoagulant activity of a basic phospholipases A2 from the Agkistrodon halys Pallas. Prot. Peptide Lett. 2002; 9: 427–434
  • Zuliani J. P., Fernandes C. M., Zamuner S. R., Gutierrez J. M., Teixeira C. F. Inflammatory events induced by Lys-49 and Asp-49 phospholipases A2 isolated from Bothrops asper snake venom: role of catalytic activity. Toxicon. 2005; 45: 335–346

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.