54
Views
3
CrossRef citations to date
0
Altmetric
Research Article

CARDIOTOXIN FROM TAIWAN COBRA (NAJA NAJA ATRA): STRUCTURE, DYNAMICS, INTERACTION AND PROTEIN FOLDING

, &
Pages 203-229 | Published online: 11 Oct 2008

References

  • Anfinsen C. B. Principles that govern the folding of protein chains. Science 1973; 181: 223–230
  • Baldwin R. L. Finding intermediates in protein folding. Bioessays 1994; 16: 207–210
  • Batenburg A. M., Bougis P. E., Rochat H., Verkleij A. J., de Kruijit B. Penetration of cardiotoxins into cardiolipin model membranes and its implications on lipid organization. Biochemistry 1985; 24: 7101–7110
  • Baum J., Dobson C. M., Evans P. A., Hanley C. Characterization of a partially folded protein by NMR methods: studies on the molten globule state of guinea pig a-lactalbumin. Biochemistry 1989; 28: 7–13
  • Bhaskaran R., Huang C. C., Chang D. K., Yu C. Cardiotoxin III from the Taiwan Cobra (Naja naja atra)—determination of structure in solution and comparison with short neurotoxins. J. Mol. Biol. 1994a; 235: 1291–1301
  • Bhaskaran R., Huang C. C., Tsai C., Jayaraman G., Chang D. K., Yu C. Cardiotoxin II from Taiwan Cobra venom, Naja naja atra—structure in solution and comparison among homologous cardiotoxins. J. Biol. Chem. 1994b; 269: 23500–23508
  • Bhaskaran R., Yu C., Yang C. C. Solution structures and functional implications of toxins from Taiwan cobra venom, Naja naja atra. J. Protein Chem. 1994c; 13: 503–504
  • Bougis P., Rochat H., Pieroni G., Verger R. Penetration of phospholipid monolayers by cardiotoxins. Biochemistry 1981; 20: 4915–4920
  • Carlsson F. H. H., Louw A. I. The oxidation of methionine and its effect on the properties of cardiotoxin VI from Naja melanoleuca venom. Biochim. Biophys. Acta 1978; 534: 325–329
  • Carlsson U. U., Jonsson B. H. Folding of β-sheet proteins. Curr. Opin. Struc. Biol. 1995; 5: 482–487
  • Chen T. S., Chung F. Y., Tjong S. C., Goh K. S., Huang W. N., Chien K. Y., Wu P. L., Lin H. C., Chen C. J., Wu W. G. Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR and CD analysis of the effect of cis-proline conformation on three fingered toxins. Biochemisty 2005; 44: 7414–7426
  • Chen Y. H., Liou R. F., Hu C. T., Juan C. C., Yang J. T. Interaction of snake venom cardiotoxin (a membrane-distruptive polypeptide) with human erythrocytes. Mol. Cell. Biochem. 1987; 73: 69–76
  • Chien K. Y., Chiang C. M., Hseu Y. C., Vyas A. A., Rule G. S., Wu W. G. Two distinct types of cardiotoxins as revealed by the structure and activity relationship of their interaction with zwitterionic phospholipids dispersions. J Biol. Chem. 1994; 269: 14473–14483
  • Chiou S. H., Hung C. C., Haung H. C., Chen S. T., Wang K. J., Yang C. C. Sequence comparison and computer modeling of cardiotoxins and cobrotoxin isolated from Taiwan cobra. Biochem. Biophys. Res. Commun. 1995; 206: 22–32
  • Condera E. Membrane-active polypeptides from snake venom: cardiotoxins and haemocytotoxins. Experientia 1974; 30: 121–129
  • Condera E. Hemolytic effects of snake venoms. In. Snake Venoms. Handbook of Experimental Pharmacology, C. Y. Lee. Springer Verlag, Berlin 1979; Vol. 52: 448–479
  • Dauplais M., Neumann J. M., Pinkasfeld S., Menez A., Roumestand C. An NMR study of the interaction of cardiotoxin from Naja nigricollis with perdeuterated dodecylphosphocholine micelles. Eur. J. Biochem. 1995; 230: 213–220
  • Dill K. A. Theory for the folding and stability of globular proteins. Biochemistry 1985; 24: 1501–1509
  • Dill K. A. Dominant forces in protein folding. Biochemistry 1990; 29: 7133–7155
  • Dobson C. M. Unfolded proteins, compact states and molten globules. Curr. Opin. Struc. Biol. 1992; 2: 6–12
  • Dobson C. M. Protein folding. Solid evidence for molten globules. Curr. Biol. 1994; 4: 636–640
  • Dubovskii P. V., Dementieva D. V., Bocharov E. V., Utkin Y. N., Arseniev A. S. Membrane binding motif of the P-type cardiotoxin. J. Mol. Biol. 2001; 305: 137–149
  • Duforcq J., Faucon J. F., Bernard E., Pezolet M., Tessier M., Van Rietschoten J., Delor P., Rochat H. Structure function relationships for cardiotoxin interacting with phospholipids. Toxicon 1982; 20: 165–174
  • Dufton M. J., Hider R. C. Conformational properties of the neurotoxins and cytotoxins isolated from Elapid snake Venoms. CRC Crit. Rev. Biochem. 1983; 14: 113–171
  • Dufton M. J., Hider R. C. The structure and pharmacology of elapid cytotoxins. In: Harvey, A. L., ed. Snake Toxins. Pergamon Press, New York 1991; 259–302
  • Dyson H. J., Wright P. E. Unfolded proteins and protein folding studied by NMR. Chem. Rev. 2004; 104: 3607–3622
  • Dyson H. J., Merutka G., Waltho J. P., Lerner A., Wright P. E. Folding of peptide fragments comprising the complete sequence of proteins-models initiation of protein folding. I. Myohemerythrin. J. Mol. Biol. 1992; 226: 795–817
  • Efremov R. G., Volynsky P. E., Nolde D. E., Dubovskii P. V., Arseniev A. S. Interaction of cardiotoxins with membranes: a molecular modeling study. Biophys. J. 2002; 83: 44–153
  • Evans P. A., Radford S. E. Probing the structure of folding intermediates. Curr. Opin. Struc. Biol. 1994; 4: 100–106
  • Fan P., Bracken C., Baum J. Structural characterization of monellin in the alcohol denatured state by NMR: evidence for β-sheet to α-helix conversion. Biochemistry 1993; 32: 1573–1582
  • Fink A. L. Compact intermediate states in protein folding. Annu. Rev. Biophys. Biomol. Struc. 1995; 24: 495–522
  • Forouhar F., Huang W. N., Liu J. H., Chien K. Y., Wu W. G., Hsiao C. D. Structural basis of membrane-induced cardiotoxin A3 oligomerization. J. Biol. Chem. 2003; 278: 21980–21988
  • Fryklund L., Eaker D. The complete covalent structure of a cardiotoxin from the venom of Naja nigricollis (African black-necked spitting cobra). Biochemistry 1975; 14: 286–2871
  • Garin J., Vignais P. V., Gronenborn A. M., Clore G. M., Gao Z., Baeuerlein E. 1H-NMR studies on nucleotide binding to the catalytic sites of bovine mitochondrial F1-ATPase. FEBS Lett. 1988; 242: 178–182, Erratum in: FEBS Lett 1989, 244: 509–510
  • Gatineau E., Toma F., Montenay-Garestier Th., Takechi M., Fromageot P., Menez A. Role of tyrosine and tryptophan residues in the structure-activity relationships of a cardiotoxin from Naja nigricollis venom. Biochemistry 1987; 26: 8046–8055
  • Grisham C. M. Nuclear magnetic resonance investigations of Na+, K+-ATPase. Methods Enzymol. 1988; 156: 353–371
  • Hamada D., Kuroda Y., Tanaka T., Goto Y. High helical propensity of the peptide fragments derived from β-lactoglobulin, a predominantly β-sheet protein. J. Mol. Biol. 1995; 254: 737–746
  • Harvey A. L. Cardiotoxins from snake venoms. Handbook of Natural Toxins, A. T. Tu. M. Dekker, Inc., New York 1991; 85–106
  • Hayashi K. M., Takechi M., Sasaki T., Lee C. Y. Amino acid sequence of cardiotoxin-analogue I from the venom of Naja naja atra. Biochem. Biophys. Res. Commun. 1975; 64: 360–366
  • Hinman C. L., Lepisto E., Stevens R., Mongomer I. N., Rauch H. C., Hudson R. A. Effects of cardiotoxins D from Naja siamensis snake venom upon murine splenic lymphocytes. Toxicon 1987; 25: 1011–1014
  • Hung C. C., Wu S. H., Chiou S. H. Sequence characterization of cardiotoxins from Taiwan cobra-isolation of a new isoform. Biochem. Mol. Biol. Int. 1993; 31: 1031–1040
  • Jaenicke R. Protein folding: local structures, domains, subunits, and assemblies. Biochemistry 1991; 30: 3147–3161
  • Jang J. Y., Kumar T. K. S., Jayaraman G., Yang P. W., Yu C. Comparison of the hemolytic activity and solution structures of two snake venom cardiotoxin analogues which only differ in their N-terminal amino acid. Biochemistry 1997; 36: 14635–14641
  • Jayaraman G., Kumar T. K. S., Yu C. Binding of nucleotide tiphosphates to cardiotoxin analogue II from the Taiwan cobra venom (Naja naja atra). Elucidation of the structural interactions in the dATP-cardiotoxin analogue II complex. J. Biol. Chem. 1999; 18: 17896–17845
  • Jayaraman G., Kumar T. K. S., Arunkumar A. I., Yu C. 2,2,2-Trifluorethanol induces helical conformation in an all β-sheet protein. Biochem. Biophys. Res. Commun. 1996a; 222: 33–37
  • Jayaraman G., Kumar T. K. S., Sivaraman T., Lin W. Y., Chang D. K., Yu C. Thermal denaturation of an all β-sheet protein-identification of a stable partially structured intermediate at high temperature. Int. J. Biol. Macromol. 1996b; 18: 303–306
  • Jayaraman G., Kumar T.K. S., Tsai C. C., Srisailam S., Chou S. H., Ho C. L., Yu C. Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra): identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Sci. 2000; 9: 637–646
  • Jeng M. F., Englander S. W., Elove G. A., Wand A. J., Roder H. Structural description of acid-denatured cytochrome c by hydrogen exchange and 2D NMR. Biochemistry 1990; 29: 10433–10437
  • Kabsch W., Holmes K. C. The actin fold. FASEB J. 1995; 9: 167–174
  • Kaneda N., Sasaki T., Hayashi K. Primary structures of cardiotoxin analogues II and IV from the venom of Naja naja atra. Biochim. Biophys. Acta 1977; 491: 53–66
  • Kini R. M., Evans H. J. Role of cationic residues in cytolytic activity: Modification of lysine residues in the cardiotoxin from Naja nigricollis venom and correlation between cytolytic and antiplatelet activity. Biochemistry 1989; 28: 9209–9215
  • Kumar T. K. S., Yu C. The structure and function of snake venom cardiotoxins. J. Toxicol. Toxin Rev. 1998; 17: 183–211
  • Kumar T. K. S., Yu C. “Cardiotoxins”. The Encyclopedia of Molecular Medicine, T. E. Creighton. John Wiley & Sons. 2002; 465–467
  • Kumar T. K. S., Yu C. Monitoring protein folding at atomic resolution. Acc. Chem. Res. 2004; 37: 929–936
  • Kumar T. K. S., Pandian S. T. K., Jayaraman G., Yu C. Understanding the structure, function and folding of cobra toxins. Proc. Natl. Sci. Counc. ROC(A) 1999; 23: 1–19
  • Kumar T. K. S., Jayaraman G., Lee C. S., Arunkumar A. I., Sivaraman T., Samuel D., Yu C. Snake venom cardiotoxins-structure, dynamics, function and folding. J. Biomolec. Struc. Dynamics 1997; 15: 431–463
  • Kumar T. K. S., Yang P. W., Lin S. H., Wu C. Y., Lei B., Lo S. Y., Tu S. C., Yu C. Cloning, direct expression and purification of a snake venom cardiotoxin in Escherichia coli. Biochem. Biophys. Res. Commun. 1996a; 219: 450–456
  • Kumar T. K. S., Lee C. S., Yu C. A case study of cardiotoxin III from Taiwan Cobra (Naja naja atra): Solution structure and other physical properties. Natural Toxin II, B. R. Singh, A. T. Tu. Plenum Press, New York 1996b; 115–129
  • Kumar T. K. S., Lee C. S., Yu C. A case study of cardiotoxin III from Taiwan Cobra (Naja naja atra): Solution structure and other physical properties. Natural Toxin II, B. R. Singh, A. T. Tu. Plenum Press, New York 1996b; 115–129
  • Kumar T. K. S., Rao C. N., Reddy R. R. The calcium binding properly of cytoxin 1 from the Indian Cobra (Naja naja naja). Recent Advances in Toxinology. 1990; 514–520
  • Kuroda Y., Kidokoro S., Wada A. Thermodynamic characterisation of cytochrome c at low pH-observation of the molten globule state and of the cold denaturation process. J. Mol. Biol. 1992; 223: 139–1153
  • Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins 1990; 6: 87–103
  • Kuwajima K. Protein folding in vivo. Curr. Opin. Struc. Biotechnol. 1992; 3: 462–467
  • Lauterwein J., Wuthrich K. A possible structural basis for the different modes of action of neurotoxins and cardiotoxins from snake venoms. FEBS Lett. 1978; 93: 181–184
  • Lee C. S., Kumar T. K. S., Lian L. Y., Cheng J. W., Yu C. Main chain dynamics of cardiotoxin II from Taiwan cobra (Naja naja atra) as studied by carbon-13 NMR at natural abundance: Delineation of the role of functionally important residues. Biochemistry 1998; 37: 4867–4875
  • Lee C. Y., Lee S. Y. Cardiovascular effect of snake venoms. In. Snake Venoms. Handbook of Experimental Pharmacology, C. Lee. Springer Verlag, Berlin 1979; Vol. 52: 546–590
  • Lin S. R., Chang L. S., Chang K. L. Separation and structure function studies of Taiwan Cobra cardiotoxins. J. Prot. Chem. 2002; 21: 81–86
  • Lin S. Y. S., Liao C., Lee C. Y. Mechanism of anticholinesterase activities of cardiotoxin, protamine and polylysine. Biochem. J. 1977; 161: 229–232
  • Lin S. Y. S., Huang M. C., Lee C. Y. Mechanism of action of cobra cardiotoxin in the skeletal muscle. J. Pharmacol. Exp. Ther. 1976; 196: 758–771
  • Lin S. Y. S., Huang M. C., Tseng W. C., Lee C. Y. Comparative studies on the biological activities of cardiotoxin, melitin and prymnesin. Nauyn-Schmiedeberg's Arch. Pharmacol. 1975; 287: 349–358
  • Liu A. P., Rizo J., Gierasch L. M. Equilibrium folding studies of cellular retinoic acid binding protein, a predominantly β-sheet protein. Biochemistry 1994; 33: 134–142
  • Menez A., Gatineau E., Roumestand C., Harvey A. L., Mouawad L., Gilquin B., Toma F. Do cardiotoxins posses a functional site? Structural and chemical modification studies reveal the functional site of the cardiotoxin from Naja nigricollis. Biochimie 1990; 72: 575–588
  • Ptitsyn O. B., Zanotti G., Denesyuk A. L., Bychkova V. E. Mechanism of pH-induced release of retinol from retinal binding protein. FEBS Lett. 1993; 317: 181–184
  • Ptitsyn O. B. Protein folding: hypotheses and experiments. J. Protein Chem. 1987; 6: 273–293
  • Rees B., Bilwes A. Three dimensional structures of neurotoxins and cardiotoxins. Chem. Res. Toxicol. 1993; 6: 385–406
  • Roumestand C., Gilquin B., Tremeau O., Gatineau E., Mouawad L., Menez A., Toma F. Proton NMR studies of the structural and dynamical effect of chemical modification of a single aromatic side-chain in a snake cardiotoxin. Relation to the structure of the putative binding site and the cytolytic activity of the toxin. J. Mol. Biol. 1994; 243: 719–735
  • Shashidaran P., Ramachandran L. K. Effect of N-bromosuccinimide modification of tyrosine side chains of cardiotoxin II of the Indian cobra on biological acitiviy. J. Biosci. 1987; 11: 287–297
  • Shiau Lin S. Y., Liao C., Lee C. Y. Studies on anti-cholinesterase activity of cobra cardiotoxin. Taiwan Yi Xue Hui Za Zhi. 1976; 75: 440–448
  • Sivaraman T., Kumar T. K. S., Hung K. W., Yu C. Influence of disulfide bonds on the induction of helical conformation in proteins. J. Prot. Chem. 1999; 18: 481–488
  • Sivaraman T., Kumar T. K. S., Chang D. K., Lin W. Y., Yu C. Events in the kinetic folding pathway of a small, all β-sheet protein. J. Biol. Chem. 1988a; 273: 10181–10189
  • Sivaraman T., Kumar T. K. S., Huang C. C., Yu C. The role of acetic acid in the prevention of salt-induced aggregation of snake venom cardiotoxins. Biochem. Mol. Biol. Int. 1988b; 44: 29–39
  • Sivaraman T., Kumar T. K. S., Lin W. Y., Chang D. K., Yu C. Events in the kinetic folding pathway of an all β-sheet protein. J. Biol. Chem. 1998; 273: 10181–10189
  • Sivaraman T., Kumar T. K. S., Jayaraman G., Han C. C., Yu C. Characterization of a partially structured state in an all β-sheet protein. Biochem. J. 1997; 321: 457–464
  • Stevens-Truss R., Hinman C. L. Activities of cobra venom cytotoxins toward heart and leukemic T-cells depend on localized amino acid differences. Toxicon 1997; 35: 659–669
  • Traut T. W. The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur. J. Biochem. 1994; 222: 9–19
  • Tu A. Venoms: Chemistry and Molecular Biology. John Wiley and Sons, New York 1997
  • Uversky V. N., Ptitsyn O. B. “Partially folded” state, a new equilibrium state of protein molecules: four-state guanidine chloride-induced unfolding of β-lactamase at low temperature. Biochemistry 1994a; 33: 2782–2791
  • Uversky V. N., Ptitsyn O. B. Further evidence on the equilibrium “pre-molten globule state”: four-state guanidine chloride-induced unfolding of carbonic anhydrase B at low temperature. J. Mol. Biol. 1994b; 255: 215–228
  • Vogt W., Patzer P., Lege L., Oldigs H. D., Wille G. Synergism between phospholipase A and various peptides and SH-reagents in causing haemolysis. Nauyn-Schmiedeberg's Arch. Pharmacol. 1970; 265: 442–454
  • Whitehouse S., Feramisco J. R., Casnellie J. E., Krebs E. G., Walsh D. A. Studies on the kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase. J. Biol. Chem. 1983; 258: 3693–3701
  • Yang C. C., Yang H. J., Huang J. S. The amino acid sequence of cobrotoxin. Biochim. Biophys. Acta 1969; 188: 65–77
  • Yu C., Bhaskaran R., Yang C. C. Structures in solution of toxins from Taiwan cobran venom, Naja naja atra, derived from NMR spectra. J. Toxicol. 1994; 13: 291–315
  • Zinn-Justin S., Roumestand C., Gilquin B., Bontems F., Menez A., Toma F. Three-dimensional solution structure of curaremimetic toxin from Naja nigricollis venom: a proton NMR and molecular modeling study. Biochemistry 1992; 31: 11335–11347

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.