605
Views
6
CrossRef citations to date
0
Altmetric
Review Article

Still challenging: the ecological function of the cyanobacterial toxin microcystin – What we know so far

, &
Pages 87-105 | Received 08 Dec 2016, Accepted 29 Apr 2017, Published online: 22 May 2017

References

  • Alexova R, Fujii M, Birch D, et al. (2011). Iron uptake and toxin synthesis in the bloom-forming Microcystis aeruginosa under iron limitation. Environ Microbiol 13:1064–77
  • Alexova R, Dang TC, Fujii M, et al. (2016). Specific global responses to N and Fe nutrition in toxic and non-toxic Microcystis aeruginosa. Environ Microbiol 18:401–13
  • Babica P, Bláha L, Maršálek B. (2006). Exploring the natural role of microcystins—a review of effects on photoautotrophic organisms. J Phycol 42:9–20
  • Bhaya D, Burnap R, Vermaas W. (2012). Probing functional diversity of thermophilic cyanobacteria in microbial mats. In: Burnap R, Vermaas W, eds. Functional genomics and evolution of photosynthetic systems. Netherlands: Springer, 17–46
  • Bláha L, Babica P, Maršálek B. (2009). Toxins produced in cyanobacterial water blooms – toxicity and risks. Interdiscip Toxicol 2:36–41
  • Bonnet MP, Poulin M. (2002). Numerical modelling of the planktonic succession in a nutrient-rich reservoir: environmental and physiological factors leading to Microcystis aeruginosa dominance. Ecol Model 156:93–112
  • Briand E, Bormans M, Quiblier C, et al. (2012). Evidence of the cost of the production of microcystins by Microcystis aeruginosa under differing light and nitrate environmental conditions. PLoS One 7:e29981
  • Büdel B. (2011). Cyanobacteria: habitats and species. In: U. Lüttge, E. Beck and D. Bartels (eds.) Plant desiccation tolerance. Berlin, Heidelberg: Springer, 11–21
  • Carmichael WW. (1992). Cyanobacteria secondary metabolites – the cyanotoxins. J Appl Bacteriol 72:445–59
  • Carmichael WW. (2001). Health effects of toxin-producing cyanobacteria: “The cyanoHABs”. Hum Ecol Risk Assess: Int J 7:1393–407
  • Castenholz RW. (2015). Portrait of a geothermal spring, Hunter's Hot Springs, Oregon. Life (Basel) 5:332–47
  • Catherine Q, Susanna W, Isidora E-S, et al. (2013). A review of current knowledge on toxic benthic freshwater cyanobacteria–ecology, toxin production and risk management. Water Res 47:5464–79
  • Chislock MF, Sarnelle O, Jernigan LM, Wilson AE. (2013). Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Res 47:1961–70
  • Christiansen G, Molitor C, Philmus B, Kurmayer R. (2008). Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 25:1695–704
  • Codd GA. (1994). Biological aspect of cyanobacterial toxin. In: Steffensen DA, Nicholson BC, Adelaide SA, eds. Toxic cyanobacterial current, status research and management. Proceedings of the International Workshop, 22–26 March 1994. Salisbury (SA): Australian Center for Water Treatment and Water Quality Research
  • Codd GA, Morrison LF, Metcalf JS. (2005). Cyanobacterial toxins: risk management for health protection. Toxicol Appl Pharmacol 203:264–72
  • Cuvin-Aralar ML, Fastner J, Focken U, et al. (2002). Microcystins in natural blooms and laboratory cultured Microcystis aeruginosa from Laguna de Bay, Philippines. Syst Appl Microbiol 25:179–82
  • Dai R, Wang P, Jia P, et al. (2016). A review on factors affecting microcystins production by algae in aquatic environments. World J Microbiol Biotechnol 32:1–7
  • Davis TW, Berry DL, Boyer GL, et al. (2009). The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of Microcystis during cyanobacteria blooms. Harmful Algae 8:715–25
  • Debolis CP, Juneau P. (2010). Relationship between photosynthetic processes and microcystin in Microcystis aeruginosa grown under different photon irradiances. Harmful Algae 9:18–24
  • DeMott WR, Zhang QX, Carmichael WW. (1991). Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol Oceanogr 36:1346–57
  • Dittmann E, Neilan BA, Erhard M, et al. (1997). Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Mol Microbiol 26:779–87
  • Dittmann E, Erhard M, Kaebernick M, et al. (2001). Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology 147:3113–39
  • Dittmann E, Börner T. (2005). Genetic contributions to the risk assessment of microcystin in the environment. Toxicol Appl Pharmacol 203:192–200
  • do Carmo Bittencourt-Oliveira M, Kujbida P, Cardozo KHM, et al. (2005). A novel rhythm of microcystin biosynthesis is described in the cyanobacterium Microcystis panniformis Komarek et al. Biochem Biophys Res Commun 326:687–94
  • Dunn RM, Manoylov KM. (2016). The effects of initial cell density on the growth andproliferation of the potentially toxic cyanobacterium Microcystis aeruginosa. J Environ Protect 7:1210–20
  • Dziallas C, Grossart HP. (2011). Increasing oxygen radicals and water temperature select for toxic Microcystis sp. PLoS One 6:e25569
  • Eiler A, Bertilsson S. (2004). Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes. Environ Microbiol 6:1228–43
  • El Herry S, Fathalli A, Rejeb AJ-B, et al. (2008). Seasonal occurrence and toxicity of Microcystis spp. and Oscillatoria tenuis in the Lebna Dam, Tunisia. Water Res 42:1263–73
  • Falconer IR, Humpage AR. (2005). Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. J Environ Res Public Health 2:43–50
  • Falconer IR. (2008). Health effects associated with controlled exposures to cyanobacterial toxins. In: Cyanobacterial Harmful Algal Blooms: State of the Science and Research Needs. New York: Springer, 607–12
  • Figueredo CC, Giani A, Bird DF. (2007). Does allelopathy contribute to Cylindrospermopsis raciborskii (cyanobacteria) bloom occurrence and geographic expansion? J Phycol 43:256–65.
  • Fischer A, Hoeger SJ, Stemmer K, et al. (2010). The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: a comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol Appl Pharmacol 245:9–20
  • Frangeul L, Quillardet P, Castets A-M, et al. (2008). Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxic freshwater cyanobacterium. BMC Genomics 9:274–94
  • Fujii M, Rose AL, Omura T, et al. (2010). Effect of Fe(II) and Fe(III) transformation kinetics on iron acquisition by a toxic strain of Microcystis aeruginosa. Environ Sci Technol 44:1980–6
  • Fulton RS, Paerl HW. (1987). Toxic and inhibitory effects of the blue-green alga Microcystis aeruginosa on herbivorous zooplankton. J Plankton Res 9:837–55
  • Gan N, Xiao Y, Zhu L, et al. (2012). The role of microcystins in maintaining colonies of bloom-forming Microcystis spp. Environ Microbiol 14:730–42
  • Gantar M, Berry JP, Thomas S, et al. (2008). Allelopathic activity among cyanobacteria and microalgae isolated from Florida freshwater habitats. FEMS Microbiol Ecol 64:55–64
  • Gerbersdorf SU. (2006). An advanced technique for immuno-labelling of microcystins in cryosectioned cells of Microcystis aeruginosa PCC 7806 (cyanobacteria): implementations of an experiment with varying light scenarios and culture densities. Toxicon 47:218–28
  • Graneli E, Weberg M, Salomon PS. (2008). Harmful algal blooms of allelopathic microalgal species: the role of eutrophication. Harmful Algae 8:94–102
  • Grass S, Buscher AZ, Swords WE, et al. (2003). The Haemophilus influenzae HMW1 adhesin is glycosylated in a process that requires HMW1C and phosphoglucomutase, an enzyme involved in lipooligosaccharide biosynthesis. Mol Microbiol 48:737–51
  • Ha K, Takamura N, Jang MH. (2009). Microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish at different kairomone concentrations. Bull Environ Contam Toxicol 83:761–5
  • Harada KI. (1996). Chemistry and detection of microcystins. In: Watanabe MF, Harada KI, Carmichael WW, Fujiki H, eds. Toxic microcystis. New York: CRC Press, 103–48
  • Harke MJ, Gobler CJ. (2013). Global transcriptional responses of the toxic cyanobacterium, Microcystis aeruginosa, to nitrogen stress, phosphorus stress, and growth on organic matter. PLoS One 8:e69834
  • Hesse K, Dittmann E, Börner T. (2001). Consequences of impaired microcystin production for light-dependent growth and pigmentation of Microcystis aeruginosa PCC 7806. FEMS Microbiol Ecol 37:39–43
  • Holland A, Kinnear S. (2013). Interpreting the possible ecological role(s) of cyanotoxins: compounds for competitive advantage and/or physiological aide? Mar Drugs 11:2239–58
  • Hong Y, Zou D, Xiao Q, et al. (2010). Interactive relationships of Microcystis aeruginosa and three species of Chlorella under the condition of coexistence. IEEE International Conference on Environmental Engineering and Applications (ICEEA), 2010 Sept 10–12, 250–54
  • Hotto A. (2007). Application of molecular techniques for the detection of potentially microcystin – producing organisms in New York state waters. New York: State University of New York College of Environmental Science and Forestry
  • Humbert JF, Barbe V, Latifi A, et al. (2013). A tribute to disorder in the genome of the bloom-forming freshwater cyanobacterium Microcystis aeruginosa. PLoS One 8:e70747
  • Ihle T, Jähnichen S, Benndorf J. (2005). Wax and wane of Microcystis (cyanophyceae) and microcystins in lake sediments: a case study in Quitzdorf reservoir (Germany). J Phycol 41:479–88
  • Jähnichen S, Ihle T, Petzoldt T. (2008). Variability of microcystin cell quota: a small model explains dynamics and equilibria. Limnol – Ecol Manag Inland Waters 38:339–49
  • Jähnichen S, Ihle T, Petzoldt T, Benndorf J. (2007). Impact of inorganic carbon availability on microcystin production by Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 73:6994–7002
  • Jähnichen S, Petzoldt T, Benndorf J. (2001). Evidence for control of microcystin dynamics in Bautzen Reservoir (Germany) by cyanobacterial population growth rates and dissolved inorganic carbon. Archiv Für Hydrobiol 150:177–96
  • Jaiswal P, Singh PK, Prasanna R. (2008). Cyanobacterial bioactive molecules-an overview of their toxic properties. Can J Microbiol 54:701–17
  • Jang MH, Ha K, Takamura N. (2007a). Reciprocal allelopathic responses between toxic cyanobacteria (Microcystis aeruginosa) and duckweed (Lemna japonica). Toxicon 49:727–33
  • Jang MH, Ha K, Takamura N. (2008). Microcystin production by Microcystis aeruginosa exposed to different stages of herbivorous zooplankton. Toxicon 51:882–9
  • Jang MH, Jung JM, Takamura N. (2007b). Changes in microcystin production in cyanobacteria exposed to zooplankton at different population densities and infochemical concentrations. Limnol Oceanogr 52:1454–66
  • Jang MH, Ha K, Joo G-J, et al. (2003). Toxin production of cyanobacteria is increased by exposure to zooplankton. Freshwater Biol 48:1540–50
  • Jang MH, Ha K, Lucas MC, et al. (2004). Changes in microcystin production by Microcystis aeruginosa exposed to phytoplanktivorous and omnivorous fish. Aquat Toxicol 68:51–9
  • Jiang J, Shan Z, Xu W, et al. (2013). Microcystin-LR induced reactive oxygen species mediate cytoskeletal disruption and apoptosis of hepatocytes in Cyprinus carpio L. PLoS One 8:e84768
  • Kaebernick M, Neilan BA. (2001). Ecological and molecular investigations of cyanotoxin production. FEMS Microbiol Ecol 35:1–9
  • Kaebernick M, Neilan BA, Börner T, et al. (2000). Light and the transcriptional response of the microcystin biosynthesis gene cluster. Appl Environ Microbiol 66:3387–92
  • Kaplan A, Harel M, Kaplan-Levy RN, et al. (2012). The languages spoken in the water body (or the biological role of cyanobacterial toxins). Front Microbiol 3:138–11
  • Kardinaal WEA, Tonk L, Janse I, et al. (2007). Competition for light between toxic and nontoxic strains of the harmful cyanobacterium Microcystis. Appl Environ Microbiol 73:2939–46
  • Keating KI. (1978). Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure. Science 199:971–3
  • Kehr JC, Zilliges Y, Springer A, et al. (2006). A mannan binding lectin is involved in cell-cell attachment in a toxic strain of Microcystis aeruginosa. Mol Microbiol 59:893–906
  • Klein AR, Baldwin DS, Silvester E. (2013). Proton and iron binding by the cyanobacterial toxin microcystin-LR. Environ Sci Technol 47:5178–84
  • Kolmonen E, Sivonen K, Rapala J, et al. (2004). Diversity of cyanobacteria and heterotrophic bacteria in cyanobacterial blooms in Lake Joutikas, Finland. Aquat Microb Ecol 36 (3):201–11
  • Kuniyoshi TM, Gonzalez A, Lopez-Gomollon S, et al. (2011). 2-Oxoglutarate enhances NtcA binding activity to promoter regions of the microcystin synthesis gene cluster. FEBS Lett 585:3921–6
  • Kurmayer R, Christiansen G, Chorus I. (2003). The abundance of microcystin-producing genotypes correlates positively with colony size in Microcystis sp and determines its microcystin net production in Lake Wannsee. Appl Environ Microbiol 69:787–95
  • Latour D, Salençon M-J, Reyss J-L, et al. (2007). Sedimentary imprint of Microcystis aeruginosa (cyanobacteria) blooms in Grangent reservoir (Loire, France). J Phycol 43:417–25
  • Leão PN, Vasconcelos MTS, Vasconcelos VM. (2009). Allelopathy in freshwater cyanobacteria. Crit Rev Microbiol 35:271–82
  • Leflaive J, Ten-Hage LOÏC. (2007). Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biol 52:199–214
  • Legrand C, Rengefors K, Fistarol GO, et al. (2003). Allelopathy in phytoplankton – biochemical, ecological and evolutionary aspects. Phycologia 42:406–19
  • Lehman PW, Marr K, Boyer GL, et al. (2013). Long-term trends and causal factors associated with Microcystis abundance and toxicity in San Francisco Estuary and implications for climate change impacts. Hydrobiologia 718:141–58
  • Lévesque B, Gervais MC, Chevalier P, et al. (2014). Prospective study of acute health effects in relation to exposure to cyanobacteria. Sci Total Environ 466:397–403
  • Lewis WM, Jr. (1986). Evolutionary interpretation of allelochemical interactions in phytoplankton algae. Am Naturalist 127:184–94
  • Liu X, Lu X, Chen Y. (2011). The effects of temperature and nutrient ratios on Microcystis blooms in Lake Taihu, China: an 11-year investigation. Harmful Algae 10:337–43
  • Long BM, Jones GJ, Orr PT. (2001). Cellular microcystin content in N-limited Microcystis aeruginosa can be predicted from growth rate. Appl Environ Microbiol 67:278–83
  • Lukač M, Aegerter R. (1993). Influence of trace metals on growth and toxin production of Microcystis aeruginosa. Toxicon 31:293–305
  • Lyck S. (2004). Simultaneous changes in cell quotas of microcystin, chlorophyll a, protein and carbohydrate during different growth phases of a batch culture experiment with Microcystis aeruginosa. J Plankton Res 26:727–36
  • Martin-Luna B, Sevilla E, Hernandez JA, et al. (2006a). Fur from Microcystis aeruginosa binds in vitro promoter regions of the microcystin biosynthesis gene cluster. Phytochemistry 67:876–81
  • Martin-Luna B, Hernandez JA, Bes MT, et al. (2006b). Identification of a ferric uptake regulator from Microcystis aeruginosa PCC7806. FEMS Microbiol Lett 254:63–70
  • Meissner S, Steinhauser D, Dittmann E. (2015). Metabolomic analysis indicates a pivotal role of the hepatotoxin microcystin in high light adaptation of Microcystis. Environ Microbiol 17:1497–509
  • Merel S, Villarín MC, Chung K, Snyder S. (2013a). Spatial and thematic distribution of research on cyanotoxins. Toxicon 76:118–31
  • Merel S, Walker D, Chicana R, et al. (2013b). State of knowledge and concerns on cyanobacterial blooms and cyanotoxins. Environ Int 59:303–27
  • Miller MB, Bassler BL. (2001). Quorum sensing in bacteria. Annu Rev Microbiol 55:165–99
  • Misson B, Donnadieu-Bernard F, Godon JJ, et al. (2012a). Short- and long-term dynamics of the toxic potential and genotypic structure in benthic populations of Microcystis. Water Res 46:1438–46
  • Misson B, Sabart M, Amblard C, Latour D. (2011). Involvement of microcystins and colony size in the benthic recruitment of the cyanobacterium Microcystis (cyanophyceae). J Phycol 47:42–51
  • Misson B, Sabart M, Amblard C, Latour D. (2012b). Benthic survival of Microcystis: long-term viability and ability to transcribe microcystin genes. Harmful Algae 13:20–5
  • Moezelaar R, Stal L. (1997). A comparison of fermentation in the cyanobacterium Microcystis PCC7806 grown under a light/dark cycle and continuous light. Eur J Phycol 32:373–8
  • Mowe MA, Porojan C, Abbas F, et al. (2015). Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species. Harmful Algae 50:88–98
  • Müller-Navarra DC, Brett MT, Liston AM, Goldman CR. (2000). A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–7
  • Namikoshi M, Rinehart K. (1996). Bioactive compounds produced by cyanobacteria. J Ind Microbiol 17: 373–84
  • Namikoshi M, Yuan M, Sivonen K, et al. (1998). Seven new microcystins possessing two L-glutamic acid units, isolated from Anabaena sp. strain 186. Chem Res Toxicol 11:143–9
  • Neilan BA, Pearson LA, Muenchhoff J, et al. (2013). Environmental conditions that influence toxin biosynthesis in cyanobacteria. Environ Microbiol 15:1239–53
  • Ngwa FF, Madramootoo CA, Jabaji S. (2014). Comparison of cyanobacterial microcystin synthetase (mcy) E gene transcript levels, mcy E gene copies, and biomass as indicators of microcystin risk under laboratory and field conditions. Microbiol Open 3:411–25
  • Niedermeyer T. (2014). Microcystin congeners described in the literature. Figshare. Available at: https://figshare.com/articles/_Microcystin_congeners_described_in_the_literature/880756. Accessed on November 22, 2016
  • Nishizawa T, Ueda A, Asayama M, et al. (2000). Polyketide synthase gene coupled to the peptide synthetase module involved in the biosynthesis of the cyclic heptapeptide microcystin. J Biochem 127:779–89
  • O’Neil JM, Davis TW, Burford MA, Gobler CJ. (2012). The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14:313–34
  • Oh HM, Lee SJ, Jang M-H, et al. (2000). Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Appl Environ Microbiol 66:176–9
  • Orr PT, Jones GJ. (1998). Relationship between microcystin production and cell division rates in nitrogen-limited Microcystis aeruginosa cultures. Limnol Oceanogr 43:1604–14
  • Pacheco ABF, Guedes IA, Azevedo SM. (2016). Is qPCR a reliable indicator of cyanotoxin risk in freshwater? Toxins (Basel) 8:172–98
  • Paerl HW, Hall NS, Calandrino ES. (2011). Controlling harmful cyanobacterial blooms in a world experiencing anthropogenic and climatic-induced change. Sci Total Environ 409:1739–45
  • Pearson L, Mihali T, Moffitt M, et al. (2010). On the chemistry, toxicology and genetics of the cyanobacterial toxins, microcystin, nodularin, saxitoxin and cylindrospermopsin. Mar Drugs 8:1650–80
  • Pearson LA, Hisbergues M, Börner T, et al. (2004). Inactivation of an ABC transporter gene, mcyH, results in loss of microcystin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Appl Environ Microbiol 70:6370–8
  • Pflugmacher S. (2002). Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–13
  • Pflugmacher S. (2004). Promotion of oxidative stress in the aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat Toxicol 70:169–78
  • Pflugmacher S, Jung K, Lundvall L, et al. (2006). Effects of cyanobacterial toxins and cyanobacterial cell-free crude extract on germination of alfalfa (Medicago sativa) and induction of oxidative stress. Environ Toxicol Chem 25:2381–7
  • Phelan RR, Downing TG. (2011). A growth advantage for microcystin production by Microcystis PCC7806 under high light(1). J Phycol 47:1241–6
  • Pietsch C, Wiegand C, Amé MV, et al. (2001). The effects of a cyanobacterial crude extract on different aquatic organisms: evidence for cyanobacterial toxin modulating factors. Environ Toxicol 16:535–42
  • Pimentel JS, Giani A. (2014). Microcystin production and regulation under nutrient stress conditions in toxic Microcystis strains. Appl Environ Microbiol 80:5836–43
  • Rantala A, Fewer DP, Hisbergues M, et al. (2004). Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101:568–73
  • Rapala J, Sivonen K, Lyra C, Niemala SI. (1997). Variation of microcystins, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl Environ Microbiol 63:2206–12
  • Rasmussen B, Fletcher IR, Brocks JJ, et al. (2008). Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101–4
  • Reichwaldt ES, Song H, Ghadouani A. (2013). Effects of the distribution of a toxic Microcystis bloom on the small scale patchiness of zooplankton. PLoS One 8:e66674
  • Renaud SL, Pick FR, Fortin N. (2011). Effect of light intensity on the relative dominance of toxigenic and nontoxigenic strains of Microcystis aeruginosa. Appl Environ Microbiol 77:7016–22
  • Rengefors K, Legrand C. (2001). Toxicity in Peridinium aciculiferum – an adaptive strategy to outcompete other winter phytoplankton. Limnol Oceanogr 46:1990–7
  • Ressom R, Douglas RM, Burch MD, et al. (1994). Health effects of toxic cyanobacteria (blue-green algae). In: Australian National Health and Medical Research Council. Canberra, Australia: Looking Glass Press
  • Reynolds CS, Jaworski GHM, Cmiech HA, et al. (1981). On the annual cycle of the blue-green alga Microcystis aeruginosa Kütz. Philos Trans R Soc B: Biol Sci 293:419–47
  • Rinehart KL, Namikoshi M, Choi BW. (1994). Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J Appl Phycol 6:159–76
  • Rodelas B, Lithgow JK, Wisniewski-Dye F, et al. (1999). Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae. J Bacteriol 181:3816–23
  • Rohrlack T, Henning M, Kohl JG. (1999a). Mechanisms of the inhibitory effects of the cyanobacterium Microcystis aeruginosa on Daphnia galeatas injestion rate. J Plankton Res 21:1489–500
  • Rohrlack T, Dittmann E, Henning M, et al. (1999b). Role of microcystins in poisoning and food ingestion inhibition of Daphnia galeata caused by the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 65:737–9
  • Runnegar M, Berndt N, Kong SM, et al. (1995). In vivo and in vitro binding of microcystin to protein phosphatases 1 and 2A. Biochem Biophys Res Commun 216:162–9
  • Schatz D, Keren Y, Hadas O, et al. (2005). Ecological implications of the emergence of non-toxic subcultures from toxic Microcystis strains. Environ Microbiol 7:798–805
  • Schatz D, Keren Y, Vardi A, et al. (2007). Towards clarification of the biological role of microcystins, a family of cyanobacterial toxins. Environ Microbiol 9:965–70
  • Schirrmeister BE, Anisimova M, Antonelli A, Bagheri HC. (2011). Evolution of cyanobacterial morphotypes: taxa required for improved phylogenomic approaches. Commun Integr Biol 4:424–7
  • Schöne K, Jähnichen S, Ihle T, et al. (2010). Arriving in better shape: benthic Microcystis as inoculum for pelagic growth. Harmful Algae 9:494–503
  • Sevilla E, Martin-Luna B, Vela L, et al. (2008). Iron availability affects mcyD expression and microcystin-LR synthesis in Microcystis aeruginosa PCC7806. Environ Microbiol 10:2476–83
  • Shi L, Carmichael WW, Miller I. (1995). Immuno-gold localization of hepatotoxins in cyanobacterial cells. Arch Microbiol 163:7–15
  • Singh DP, Tyagi MB, Arvind Kumar JK, et al. (2001). Antialgal activity of a hepatotoxin-producing cyanobacterium, Microcystis aeruginosa. World J Microbiol Biotechnol 17:15–22
  • Singh SM, Elster JOSEF. (2007). Cyanobacteria in Antarctic lake environments. In: Seckbach J, ed. Algae and cyanobacteria in extreme environments. Netherlands: Springer, 303–20
  • Sivonen K. (1990). Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl Environ Microbiol 56:2658–66
  • Sivonen K. (1996). Cyanobacterial toxins and toxin production. Phycologia 35:12–24
  • Sivonen K, Jones G. (1999). Cyanobacterial toxins. In: Chorus I, Bartram J, eds. Toxic cyanobacteria in water. A guide to their public health consequences, monitoring and management. London: E & FN Spon, 41–111
  • Smith JL, Boyer GL, Zimba PV. (2008). A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280:5–20
  • Sompong U, Hawkins PR, Besley C, Peerapornpisal Y. (2005). The distribution of cyanobacteria across physical and chemical gradients in hot springs in northern Thailand. FEMS Microbiol Ecol 52:365–76
  • Stewart I, Seawright AA, Shaw GR. (2008). Cyanobacterial poisoning in livestock, wild mammals and birds – an overview. In: Hudnell HK, ed. Cyanobacterial harmful algal blooms: state of the science and research needs. New York: Springer, 613–37
  • Straub C, Quillardet P, Vergalli J, et al. (2011). A day in the life of Microcystis aeruginosa strain PCC 7806 as revealed by a transcriptomic analysis. PLoS One 6:e16208
  • Sukenik A, Eshkol R, Livne A, et al. (2002). Inhibition of growth and photosynthesis of the dinoflagellate Peridinium gatunense by Microcystis sp. (cyanobacteria): a novel allelopathic mechanism. Limnol Oceanogr 47:1656–63
  • Sun Q, Zhu W, Li M, et al. (2015). Morphological changes of Microcystis aeruginosa colonies in culture. J Limnol 75:14–23
  • Sunda WG. (2001). Bioavailability and bioaccumulation of iron in the sea. In: Turner DR, Hunter KA, eds. The biogeochemistry of iron in seawater. IUPAC series on analytical and physical chemistry of environmental systems. Chichester: John Wiley and Sons, 41–84
  • Takamura N, Yasuno M, Sugahara K. (1984). Overwintering of Microcystis aeruginosa Kutz. in a shallow lake. J Plankton Res 6:1019–29
  • Tan X, Kong F, Cao H, et al. (2008). Recruitment of bloom-forming cyanobacteria and its driving factors. Afr J Biotechnol 7:4726–31
  • Tillett D, Dittmann E, Erhard M, et al. (2000). Structural organization of Miicrocystin biosynthesis in Microcystis aeruginosa PCC 7806: an integrated peptide-polyketide synthetase system. Chem Biol 7:753–64
  • Tonietto Â, Petriz BA, Araújo WC, et al. (2012). Comparative proteomics between natural Microcystis isolates with a focus on microcystin synthesis. Proteome Sci 10:38–38
  • Torres GS, Adámek Z. (2013). Factors promoting the recruitment of benthic cyanobacteria resting stages: a review. Croatian J Fischeries 71:182–6
  • Tsujimura S, Tsukada H, Nakahara H, et al. (2000). Seasonal variations of Microcystis populations in sediments of Lake Biwa, Japan. Hydrobiologia 434::183–192
  • Ufelmann H, Krüger T, Luckas B, Schrenk D. (2012). Human and rat hepatocyte toxicity and protein phosphatase 1 and 2A inhibitory activity of naturally occurring desmethyl-microcystins and nodularins. Toxicology 293:59–67
  • Utkilen H, Gjølme N. (1992). Toxin production by Microcystis aeruginosa as a function of light in continuous cultures and its ecological significance. Appl Environ Microbiol 58:1321–5
  • Van Apeldoorn ME, van Egmond HP, Speijers GJ, Bakker GJ. (2007). Toxins of cyanobacteria. Mol Nutr Food Res 51:7–60
  • Van der Westhuizen AJ, Eloff JN. (1983). Effect of culture age and pH of culture medium on the growth and toxicity of the blue-green alga Microcystis aeruginosa. Zeitschrift Für Pflanzenphysiologie 110:157–63
  • Van der Westhuizen AJ, Eloff JN. (1985). Effect of temperature and light on the toxicity and growth of the blue-green alga Microcystis aeruginosa (UV-006). Planta 163:55–9
  • Ward DM, Ferris MJ, Nold SC, Bateson MM. (1998). A natural view of microbial biodiversity within hot spring cyanobacterial mat communities. Microbiol Mol Biol Rev 62:1353–70
  • Watson SB. (2003). Cyanobacterial and eukaryotic algal odour compounds: signal or by-products? A review of their biological activity. Phycologia 42:332–50
  • Welker M, Von Döhren H. (2006). Cyanobacterial peptides – nature's own combinatorial biosynthesis. FEMS Microbiol Rev 30:530–63
  • Whitton BA. (2012). Ecology of cyanobacteria II: their diversity in space and time. Netherlands: Springer Science & Business Media
  • Wiedner C, Visser PM, Fastner J, et al. (2003). Effects of light on the microcystin content of Microcystis strain PCC 7806. Appl Environ Microbiol 69:1475–81
  • Wiegand C, Pflugmacher S. (2005). Ecotoxicological effects of selected cyanobacterial secondary metabolites: a short review. Toxicol Appl Pharmacol 203:201–18
  • Wood SA, Rueckert A, Hamilton DP, et al. (2011). Switching toxin production on and off: intermittent microcystin synthesis in a Microcystis bloom. Environ Microbiol Rep 3:118–24
  • Wood SA, Dietrich DR, Cary SC, et al. (2012). Increasing Microcystis cell density enhances microcystin synthesis: a mesocosm study. Inland Waters 2:17–22
  • Wu ZX, Gan N-Q, Huang Q, et al. (2007). Response of Microcystis to copper stress: do phenotypes of microcystis make a difference in stress tolerance? Environ Pollut 147:324–30
  • Yang Z, Kong F, Shi X, et al. (2006). Morphological response of Microcystis aeruginosa to grazing by different sorts of zooplankton. Hydrobiologia 563:225–30
  • Yang Z, Kong F, Zhang M, et al. (2009). Effect of filtered cultures of flagellate Ochromonas sp on colony formation in Microcystis aeruginosa. Int Rev Hydrobiol 94:143–52
  • Yang Z, Kong F. (2012). Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp. J Limnol 71:61–6
  • Yeung AC, D'Agostino PM, Poljak A, et al. (2016). Physiological and proteomic responses of continuous cultures of Microcystis aeruginosa PCC 7806 to changes in iron bioavailability and growth rate. Appl Environ Microbiol 82:5918–29
  • Young FM, Thomson C, Metcalf JS, et al. (2005). Immunogold localisation of microcystins in cryosectioned cells of Microcystis. J Struct Biol 151:208–14
  • Young FM, Morrison LF, James J, et al. (2008). Quantification and localization of microcystins in colonies of a laboratory strain of Microcystis (Cyanobacteria) using immunological methods. Eur J Phycol 43:217–25
  • Yu L, Kong F, Zhang M, et al. (2014). The dynamics of microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu, China. Toxins 6:3238–57
  • Zakhia F, Jungblut A-D, Taton A, et al. (2008). Cyanobacteria in cold ecosystems. In: Margesin R, Schinner F, Marx JC, Gerday C, eds. Psychrophiles: from biodiversity to biotechnology. Berlin, Heidelberg: Springer, 121–35
  • Zanchett G, Oliveira-Filho EC. (2013). Cyanobacteria and cyanotoxins: from impacts on aquatic ecosystems and human health to anticarcinogenic effects. Toxins 5:1896–917
  • Zhang M, Kong F, Tan X, et al. (2007). Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World J Microbiol Biotechnol 23:663–70
  • Zhang Y, Jiang H-B, Liu S-W, et al. (2012). Effects of dissolved inorganic carbon on competition of the bloom-forming cyanobacterium Microcystis aeruginosa with the green alga Chlamydomonas microsphaera. Eur J Phycol 47:1–11
  • Zhang Y, Wang J, Tan L, et al. (2015). Effect of allelopathy on the competition and succession of Skeletonema costatum and Prorocentrum donghaiense. Mar Biol Res 11:1093–9
  • Zilliges Y, Kehr JC, Mikkat S, et al. (2008). An extracellular glycoprotein is implicated in cell-cell contacts in the toxic cyanobacterium Microcystis aeruginosa PCC 7806. J Bacteriol 190:2871–9
  • Zilliges Y, Kehr J-C, Meissner S, et al. (2011). The cyanobacterial hepatotoxin microcystin binds to proteins and increases the fitness of Microcystis under oxidative stress conditions. PLoS One 6:e17615
  • Zurawell RW, Chen H, Burke JM, Prepas EE. (2005). Hepatotoxic cyanobacteria: a review of the biological importance of microcystins in freshwater environments. J Toxicol Environ Health*, Part B 8:1–37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.