581
Views
4
CrossRef citations to date
0
Altmetric
Review Articles

Nature and applications of scorpion venom: an overview

, , , , &
Pages 214-225 | Received 14 Jun 2018, Accepted 27 Sep 2018, Published online: 20 Dec 2018

References

  • AbdulRahman, K., et al., 2016. Elemental analysis of scorpion venoms. Journal of venom research, 7, 16–20.
  • Aboutorabia, A., et al., 2016. Voltage-gated sodium channels modulation by Bothutous schach scorpion venom. Iranian journal of pharmaceutical sciences, 12 (3), 55–64.
  • Afshari, R., 2016. Arthropods: bite like a spider, sting like a scorpion. Nature, 537 (7619), 167.
  • Ahsan, M.M., et al., 2016. Intra- and inter-specific foraging in three scorpion species. Punjab university journal of zoology, 31 (1), 069–076.
  • Ahsan, M.M., Tahir, H.M., and Naqi, J.A., 2015. First report of scorpion envenomization in District Sargodha, Punjab, Pakistan. Biologia, 61 (2), 279–285.
  • Al-Asmari, A.K., Islam, M., and Al-Zahrani, A.M., 2016. In vitro analysis of the anticancer properties of scorpion venom in colorectal and breast cancer cell lines. Oncology letters, 11 (2), 1256–1262.
  • Almaaytah, A., et al., 2013. Mauriporin, a novel cationic α-helical peptide with selective cytotoxic activity against prostate cancer cell lines from the venom of the scorpion Androctonus mauritanicus. International journal of peptide research and therapeutics, 19 (4), 281–293.
  • Almeida, D.D., et al., 2012. Profiling there sting venom gland of the scorpion Tityus stigmurus through a transcriptomic survey. Genomics, 13 (1), 362.
  • Andrikopoulos, P., et al., 2011. Angiogenic functions of voltage gated Na + Channels in human endothelial cells: modulation of vascular endothelial growth factor (VEGF) signaling. Journal of biological chemistry, 286 (19), 16846–16860.
  • Attarde, S.S. and Pandit, S.V., 2016. Scorpion venom as therapeutic agent - current perspective. International journal of current pharmaceutical research, 7 (2), 59–72.
  • Bagal, S., et al., 2013. Ion channels as therapeutic targets: a drug discovery perspective. Journal of medicinal chemistry, 56 (3), 593–624.
  • Bahloul, M., et al., 2013. Severe scorpion envenomation among children: does hydrocortisone improve outcome? A case–control study. Transactions of the royal society of tropical medicine and hygiene, 107 (6), 349–355.
  • Baradaran, M., et al., 2011. Sequence analysis of lysozyme C fromthe scorpion Mesobuthus eupeus venom glands using semi-nested RT-PCR. Iranian red crescent medical journal, 13 (10), 719–725.
  • Bawaskar, H.S., 2005. Management of severe scorpion sting at rural settings: what is the role of scorpion antivenom? Journal of venomous animals and toxins including tropical diseases, 11, 3–7.
  • Bawaskar, H.S. and Bawaskar, H.P., 2012. Scorpion sting: update. The journal of the association of physicians of India, 60, 46–53.
  • Bechohra, L., Laraba-Djebari, F., and Hammoudi-Triki, D., 2016. Cytotoxic activity of Androctonus australis venom and its toxic fractions on human lung cancer cell line. Journal of venomous animals and toxins including tropical diseases, 22, 29.
  • Bergman, N.J., 1997. Clinical description of Parabuthus transvaalicus scorpionism in Zimbabwe. Toxicon, 35 (5), 759–771.
  • Betancourt, O.H., et al., 2009. Evaluacion de la toxicidad in vitro del veneno del alacran Rophalurus junceus a traves de un ensayo celular. Revista cubana de investigaciones biomédicas, 28 (1), 1–11.
  • Bezanilla, F., 2000. The voltage sensor in voltage-dependent ion channels. Physiological reviews, 80 (2), 555–592.
  • Biswas, A., et al., 2012. Nanoparticle-conjugated animal venom-toxins and their possible therapeutic potential. Journal of venom research, 3, 15–21.
  • Bouafir, Y., Ait-Lounis, A., and Laraba-Djebari, F., 2016. Improvement of function and survival of pancreatic beta-cells in streptozotocin-induced diabetic model by the scorpion venom fraction F1. Toxin Reviews, 36 (2), 1–8.
  • Caliskan, F., et al., 2013. Biological assays on the effects of Acra3 peptide from Turkish scorpion Androctonus crassicauda venom on a mouse brain tumor cell line (BC3H1) and production of specific monoclonal antibodies. Toxicon, 76, 350–361.
  • Cao, Z., et al., 2014. Overview of scorpion species from china and their toxins. Toxins, 6 (3), 796–815.
  • Cassulini, R.R., et al., 2017. Antivenom evaluation by electrophysiological analysis. Toxins, 9 (3), 74.
  • Catterall, W.A., et al., 2007. Voltage-gated ion channels and gating modifier toxins. Toxicon: official journal of the international society on toxinology, 49 (2), 124–141.
  • Chandy, K.G., et al., 2004. K + channels as targets for specific immunomodulation. Trends in pharmacological sciences, 25 (5), 280–289.
  • Chen, Z.Y., et al., 2012. Hg1, novel peptide inhibitor specific for Kv1.3 channels from first scorpion Kunitz–type potassium channel toxin family. Journal of biological chemistry, 287 (17), 13813–13821.
  • Chen, R. and Chung, S.H., 2012. Engineering a potent and specific blocker of voltage-gated potassium channel Kv1.3, a target for autoimmune diseases. Biochemistry, 51 (9), 1976–1982.
  • Chen, R. and Chung, S.H., 2015. Computational studies of venom peptides targeting potassium channels. Toxins, 7 (12), 5194–5211.
  • Cheng, Y., et al., 2014. Recent advances in diagnosis and treatment of gliomas using chlorotoxin-based bioconjugates. American journal of nuclear medicine and molecular imaging, 4 (5), 385–405.
  • Chen, B. and Ji, Y., 2002. Antihyperalgesia effect of BmK AS, a scorpion toxin, in rat by intraplantar injection. Brain research, 952 (2), 322–326.
  • Chgoury, F., et al., 2011. Etude toxico-cinetique biologique du venin de scorpion Androctonus mauretanicus chez le lapin. Toxines transf. ioniques-ed. Lavoisier, 10, 151–154.
  • Chgoury, F., et al., 2015. Effectiveness of the Androctonus Australis Hector nanobody NbF12-10 antivenom to neutralize significantly the toxic effect and tissue damage provoked by fraction of Androctonus mauretanicus (Morocco) scorpion venom. Biochemical pharmacology, 4, 1–8.
  • Chippaux, J.P., 2012. Emerging options for the management of scorpion stings. Drug design, development and therapy, 6, 165–173.
  • Chippaux, J.P., 2015. Epidemiology of envenomations by terrestrial venomous animals in Brazil based on case reporting: from obvious facts to contingencies. Journal of venomous animals and toxins including tropical diseases, 21, 13.
  • Chippaux, J.P. and Alagon, A., 2008. Envenomation and poisoning by venomous or poisonous animals. Arachnidism in the new world. Médecine tropicale: revue du Corps de santé colonial, 68, 215–221.
  • Chippaux, J.P. and Goyffon, M., 2008. Epidemiology of scorpionism: a global appraisal. Acta Tropica, 107 (2), 71–79.
  • Chowell, G., et al., 2006. Epidemiological and clinical characteristics of scorpionism in Colima, Mexico (2000–2001). Toxicon: official journal of the international society on toxinology, 47 (7), 753–758.
  • Cordeiro, F.A., et al., 2015. Arachnids of medical importance in Brazil: main active compounds present in scorpion and spider venoms and tick saliva. Journal of venomous animals and toxins including tropical diseases, 21, 24.
  • Crest, M., 1992. Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca(2+)-activated K + channels characterized from Androctonus mauretanicus mauretanicus venom. Journal of biological chemistry, 267 (3), 1640–1647.
  • Dai, C., et al., 2008. Mucroporin, the first cationic host defense peptide from the venom of Lychas mucronatus. Antimicrobial agents and chemotherapy, 52 (11), 3967–3972.
  • Dardevet, L., et al., 2015. Chlorotoxin: a helpful natural scorpion peptide to diagnose glioma and fight tumor invasion. Toxins, 7 (4), 1079–1101.
  • Das, G.S., et al., 2007. Indian black scorpion (Heterometrus bengalensis) venom induced antiproliferative and apoptogenic activity against human leukemic cell lines U937 and K562. Leukemia research, 31 (6), 817–825.
  • Das, S., et al., 2013. Fatal scorpion envenomation: report of two cases. Journal of Indian academy of forensic medicine, 35 (4), 404–407.
  • Davis, G.C., et al., 2012. Asymmetric synthesis and evaluation of a hydroxyphenylamide voltage-gated sodium channel blocker in human prostate cancer xenografts. Bioorganic & medicinal chemistry, 20 (6), 2180–2188.
  • Dehghani, R. and Fathi, B., 2012. Scorpion sting in Iran: a review. Toxicon: official journal of the international society on toxinology, 60 (5), 919–933.
  • DeSantis, C.E., et al., 2014. Cancer treatment and survivorship statistics, 2014. CA: a cancer journal for clinicians, 64 (4), 252–271.
  • Diaz-Garcia, A., et al., 2013. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines. Journal of venom research, 4, 5–12.
  • Ding, J., et al., 2014. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental biology and medicine, 239 (4), 387–393.
  • Diss, J.K., et al., 2005. A potential novel marker for human prostate cancer: voltage-gated sodium channel expression in vivo. Prostate cancer and prostatic diseases, 8 (3), 266–273.
  • Dittrich, K., Power, A.P., and Smith, N.A., 1995. Scorpion sting sydrome - a ten year experience. Annals of Saudi medicine, 15 (2), 148–155.
  • Djamgoz, M.B., Coombes, R.C., and Schwab, A., 2014. Ion transport and cancer: from initiation to metastasis. Philosophical transactions of the royal society of London. Series B, biological sciences, 369 (1638), 20130092.
  • Dutertre, S. and Lewis, R.J., 2010. Use of venom peptides to probe ion channel structure and function. Journal of biological chemistry, 285 (18), 13315–13320.
  • Ebrahimi, V., et al., 2017. Predictive determinants of scorpion stings in a tropical zone of south Iran: use of mixed seasonal autoregressive moving average model. Journal of venomous animals and toxins including tropical diseases, 23, 39.
  • El-Bitar, A.M.H., et al., 2015. Virocidal activity of Egyptian scorpion venoms against hepatitis C virus. Virology journal, 12 (1), 47.
  • El-Ghlban, S., et al., 2014. Chlorotoxin-Fc fusion inhibits release of MMP-2 from pancreatic cancer cells. BioMed research international, 2014, 1.
  • Fan, Z., et al., 2011. Ctriporin, a new anti–methicillin–resistant Staphylococcus aureus peptide from the venom of the scorpion Chaerilus tricostatus. Antimicrobial agents and chemotherapy, 55 (11), 5220–5229.
  • Farghly, W. and Ali, F.A., 1999. Clinical and neurophysiological study of scorpion envenomation in Assiut, Upper Egypt. Study of scorpion envenomation in Assiut, upper Egypt. Acta Paediatrica, 88 (3), 290–294.
  • Feng, J., et al., 2013. Two conserved arginine residues from the SK3 potassium channel outer vestibule control selectivity of recognition by scorpion toxins. Journal of biological chemistry, 288 (18), 12544–12553.
  • Feng, L., Gao, R., and Gopalakrishnakone, P., 2008. Isolation and characterization of a hyaluronidase from the venom of Chinese red scorpion Buthus martensi. Comparative biochemistry and physiology. Toxicology & pharmacology, 148 (3), 250–257.
  • Ferreira, M.G., et al., 2016. Toxicity of crude and detoxified Tityus serrulatus venom in anti-venom-producing sheep. Journal of veterinary science, 17 (4), 467–477.
  • Gao, B., et al., 2010. Characterization of two linear cationic antimalarial peptides in the scorpion Mesobuthus eupeus. Biochimie, 92 (4), 350–359.
  • Giovannini, C., et al., 2017. Venom from Cuban Blue Scorpion has tumor activating effect in hepatocellular carcinoma. Scientific reports, 7, 44685.
  • Gomes, A., et al., 2010. Anticancer potential of animal venoms and toxins. Indian journal of experimental biology, 48 (2), 93–103.
  • Gomes, A., Dasa, R., and Ghosh, S., 2016. Antiscorpion venom activity of an aromatic compound having carbohydrate moiety isolated from Hemidesmus indicus (Anantamul) root extract in experimental animal models. Translational medicine, 6 (4), 191.
  • Gomes, A. and Gomes, A., 2015. Scorpion venoms, scorpion venom research around the world: heterometrus species. Toxinology, 4, 351–367.
  • González, C., et al., 2012. K(+) channels: function-structural overview. Comprehensive physiology, 2 (3), 2087–2149.
  • Gueguinou, M., et al., 2014. KCa and Ca2+ channels: The complex thought. Biochimica et biophysica acta, 1843 (10), 2322–2333.
  • Gupta, S.D., et al., 2010. Apoptosis induction in human leukemic cells by a novel protein Bengalin, isolated from Indian black scorpion venom: through mitochondrial pathway and inhibition of heat shock proteins. Chemico-biological interactions, 183 (2), 293–303.
  • Hammoudi-Triki, D., et al., 2004. Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Transactions of the royal society of tropical medicine and hygiene, 98 (4), 240–250.
  • Han, S., et al., 2008. Structural basis of a potent peptide inhibitor designed for Kv1.3 channel, a therapeutic target of autoimmune disease. Journal of biological chemistry, 283 (27), 19058–19065.
  • Han, S., et al., 2010. Protein–protein recognition control by modulating electrostatic interactions. Journal of proteome research, 9 (6), 3118–3125.
  • Hargreaves, A.D., et al., 2014. Restriction and recruitment-gene duplication and the origin and evolution of snake venom toxins. Genome biology and evolution, 6 (8), 2088–2095.
  • Heinen, T.E. and Veiga, A.B., 2011. Arthropod venoms and cancer. Toxicon: official journal of the international society on toxinology, 57 (4), 497–511.
  • Hmed, B.N., Serria, H.T., and Mounir, Z.K., 2013. Scorpion peptides: potential use for new drug development. Journal of toxicology, 2013. Article ID 958797.
  • Huang, X. and Jan, L.Y., 2014. Targeting potassium channels in cancer. The journal of cell biology, 206 (2), 151–162.
  • Incamnoi, P., et al., 2013. Heteromtoxin (HmTx), a novel heterodimeric phospholipase A2 from Heterometrus laoticus scorpion venom. Toxicon, 61, 62–71.
  • Isbister, G.K. and Bawaskar, H.S., 2014. Scorpion envenomation. The New England journal of medicine, 371 (5), 457–463.
  • Jahchan, N.S., et al., 2013. A drug repositioning approach identifies tricyclic antidepressants as inhibitors of small cell lung cancer and other neuroendocrine tumors. Cancer discovery, 3 (12), 1364–1377.
  • Jian, D., et al., 2014. Scorpion venoms as a potential source of novel cancer therapeutic compounds. Experimental biology and medicine, 239, 387–393.
  • Joseph, B. and George, J., 2012. Scorpion toxins and its applications. International journal of toxicological and pharmacological research, 4 (3), 57–61.
  • Kassiri, H., Feizhaddad, M., and Abdehpanah, M., 2014. Morbidity, surveillance and epidemiology of scorpion sting, cutaneous leishmaniasis and pediculosis capitis in Bandar-mahshahr County, Southwestern Iran. Journal of acute disease, 3 (3), 194–200.
  • Khan, M.F. and Ullah, H., 2017. Multi-organ dysfunction secondary to Yellow Scorpion Sting. Journal of Ayub Medical College, Abbottabad: JAMC, 29 (2), 347–349.
  • Khatony, A., et al., 2015. The epidemiology of scorpion stings in tropical areas of Kermanshah province, Iran, during 2008 and 2009. Journal of venomous animals and toxins including tropical diseases, 21, 45.
  • Knapp, O., McArthur, J.R., and Adams, D.J., 2012. Conotoxins targeting neuronal voltage gated sodium channel subtypes: potential analgesics?. Toxins, 4 (11), 1236–1260.
  • Koohi, M.K., et al., 2009. Anticancer effect of ICD-85 (venom derived peptides) on MDA-MB231cell line (in vitro) and experimental mice with breast cancer (in vivo). International journal of veterinary research, 3, 49–54.
  • Kuzmenkov, A.I., Grishin, E.V., and Vassilevski, A.A., 2015. Diversity of potassium channel ligands: focus on scorpion toxins. Biochemistry. Biokhimiia, 80 (13), 1764–1799.
  • Lansu, K. and Gentile, S., 2013. Potassium channel activation inhibits proliferation of breast cancer cells by activating a senescence program. Cell Death & Disease, 4 (6), e652.
  • Lu, X., et al., 2006. Integrins in drug targeting-RGD templates in toxins. Current pharmaceutical design, 12 (22), 2749–2769.
  • Maghsoodi, N., Vazirianzadeh, B., and Salahshoor, A., 2015. Scorpion sting in Izeh, Iran: an epidemiological study during 2009–2011. Journal of basic & applied sciences, 11, 403–409.
  • McLane, M.A., Joerger, T., and Mahmoud, A., 2008. Disintegrins in health and disease. Frontiers in bioscience: a journal and virtual library, 13 (1), 6617–6637.
  • Nakajima, T., et al., 2009. Eicosapentaenoic acid inhibits voltage gated sodium channels and invasiveness in prostate cancer cells. British journal of pharmacology, 156 (3), 420–431.
  • Natu, V.S., Murthy, R.K.K., and Deodhar, K.P., 2006. Efficacy of species specific anti-scorpion venom serum (AScVS) against severe, serious scorpion stings (Mesobuthus tamulus concanesis Pocock) - an experience from Rural Hospital in Western Maharashtra. The journal of the association of physicians of India, 54, 283–287.
  • Ortiz, E., et al., 2015. Scorpion venom components as potential candidates for drug development. Toxicon: official journal of the international society on toxinology, 93, 125–135.
  • Osnaya-Romero, N., et al., 2001. Clinical symptoms observed in children envenomed by scorpion stings, at the Children’s Hospital from the state of Morelos, Mexico. Toxicon, 39 (6), 781–785.
  • Oukkache, N., et al., 2015. Characterization of AmIT, an anti-insect β-toxin isolated from the venom of scorpion Androctonus mauretanicus. Acta physiologica sinica, 25, 295–304.
  • Ozkan, O., et al., 2008. Evaluation of scorpion sting incidence in turkey. Journal of venomous animals and toxins including tropical diseases, 14 (1), 128–140.
  • Pardal, P.P., et al., 2003. Epidemiological and clinical aspects of scorpion envenomation in the region of Santarem, Para, Brasil. Revista da sociedade Brasileira de medicina tropical, 36, 349–353.
  • Pedersen, S.F. and Stock, C., 2013. Ion channels and transporters in cancer: Pathophysiology, regulation, and clinical potential. Cancer research, 73 (6), 1658–1661.
  • Peng, F., et al., 2002. Molecular cloning and functional expression of a gene encoding an antiarrhythmia peptide derived from the scorpion toxin. European journal of biochemistry, 269 (18), 4468–4475.
  • Perez-Neut, M., Rao, V.R., and Gentile, S., 2016. hERG1/Kv11.1 activation stimulates transcription of p21waf/cip in breast cancer cells via a calcineurin-dependent mechanism. Oncotarget, 7, 58893–58902.
  • Petricevich, V.L., 2004. Cytokine and nitric oxide production following severe envenomation. Current drug target -inflammation & allergy, 3 (3), 325–332.
  • Petricevich, V.L., 2010. Scorpion venom and the inflammatory response. Mediators of inflammation, 2010, 903295.
  • Possani, L.D., et al., 2000. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie, 82 (9–10), 861–868.
  • Pucca, M.B., et al., 2015. Tityus serrulatus venom - a lethal cocktail. Toxicon: official journal of the international society on toxinology, 108, 272–284.
  • Qiu, S., et al., 2009. Molecular information of charybdotoxin blockade in the large conductance calcium–activated potassium channel. Journal of chemical information and modeling, 49 (7), 1831–1838.
  • Quintero-Hernández, V., et al., 2013. Scorpion venom components that affect ion-channels function. Toxicon: official journal of the international society on toxinology, 76, 328–342.
  • Rahmani, A. and Jalali, A., 2012. Symptom patterns in adult patients stung by scorpions with emphasis on coagulopathy and hemoglubinuria. Journal of venomous animals and toxins including tropical diseases, 18 (4), 427–431.
  • Rao, V.R., et al., 2015. Voltage-gated ion channels in cancer cell proliferation. Cancers, 7 (2), 849–875.
  • Rashidi, G., et al., 2016. An in vitro study on cytotoxic effects of Androctonus crassicauda scorpion venom on K562 Cell Line. Research journal of pharmaceutical, biological and chemical sciences, 7 (6), 846–852.
  • Raza, M., et al., 2001. Anticonvulsant activities of ethanolic extract and aqueous fraction isolated from Delphinium denudatum. Journal of ethnopharmacology, 78 (1), 73–78.
  • Rodriguez, R.C., Schwartz, E.F., and Possani, L.D., 2010. Mining on scorpion venom biodiversity. Toxicon: official journal of the international society on toxinology, 56 (7), 1155–1161.
  • Rodrıguez, R.C., Vega, D.L., and Possani, L.D., 2005. Overview of scorpion toxins specific for Na + channels and related peptides: biodiversity, structure-function relationships and evolution. Toxicon, 46 (8), 831–844.
  • Roger, S., et al., 2007. Voltage-gated sodium channels potentiate the invasive capacities of human non-small-cell lung cancer cell lines. International journal of biochemistry and cell biology, 39 (4), 774–786.
  • Romero-Gutierrez, T., et al., 2017. A deeper examination of Thorellius atrox scorpion venom components with omic technologies. Toxins, 9 (12), 399.
  • Sadeghian, H., 2003. Transient ophthalmoplegia following envenomation by the scorpion Mesobuthus eupeus. Neurology, 60 (2), 346–347.
  • Saini, T., Gupta, S., and Kumhar, M., 2012. Scorpion bite causing acute severe myocarditis: a rare complication. Indian journal of clinical practice, 23 (3), 166–168.
  • Salem, M.L., et al., 2016. In vitro and in vivo antitumor effects of the Egyptian scorpion Androctonus amoreuxi venom in an Ehrlich ascites tumor model. Springer plus, 5, 570.
  • Sato, C., et al., 2001. The voltage sensitive sodium channel is a bellshaped molecule with several cavities. Nature, 409 (6823), 1047–1051.
  • Scholl, U.I., et al., 2013. Somatic and germline CACNA1D calcium channel mutations in aldosterone-producing adenomas and primary aldosteronism. Nature genetics, 45 (9), 1050–1054.
  • Shahi, M., et al., 2015. First report of death due to Hemiscorpius acanthocercus envenomation in Iran: case report. Electronic physician, 7 (5), 1234–1238.
  • Shahi, M., et al., 2016. Spatial distribution of scorpion sting in a high-risk area of southern Iran. Journal of medical entomology, 53 (5), 1198–1204.
  • Shao, J.H., et al., 2007. Purification and characterization of an analgesic peptide from Buthus martensii Karsch. Biomedical chromatography: BMC, 21 (12), 1266–1271.
  • Shi, J., et al., 2008. Inhibition of martentoxin on neuronal BK channel subtype (alpha + beta4): implications for a novel interaction model. Biophysical journal, 94 (9), 3706–3713.
  • Shichor, I., et al., 2002. Domain 2 of Drosophila para voltage-gated sodium channel confers insect properties to a rat brain channel. The journal of neuroscience, 22 (11), 4364–4371.
  • Smith, J.J., et al., 2013. Multiple actions of phi–LITX on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the national academy of sciences of the United States of America, 110 (22), 8906–8911.
  • Srinivasan, K.N., et al., 2002. Scorpion, a molecular database of scorpion toxins. Toxicon: official journal of the international society on toxinology, 40 (1), 23–31.
  • Stevens, M., Peigneur, S., and Tytgat, J., 2011. Neurotoxins and their binding areas on voltage-gated sodium channels. Frontiers in pharmacology, 2 (2), 71.
  • Tong-ngam, P., Roytrakul, S., and Sritanaudomchai, H., 2015. BmKn-2 scorpion venom peptide for killing oral cancer cells by apoptosis. Asian Pacific journal of cancer prevention: APJCP, 16 (7), 2807–2811.
  • Turner, K.L. and Sontheimer, H., 2014. Cl- and K + channels and their role in primary brain tumour biology. Philosophical transactions of the Royal Society of London. Series B, biological sciences, 369 (1638), 20130095.
  • Vazirianzadeh, B., et al., 2013. An epidemiological study on scorpion stings in Lordegan County, south-west of Iran. Archives de L'Institut Razi, 13 (89), 1–6.
  • Veiseh, M., et al., 2007. Tumor paint: a cholorotoxin: L Cy5.5 bioconjugate for interaoperative visualization of cancer foci. Cancer research, 67 (14), 6882–6888.
  • Villetti, G., et al., 2001. Preclinical evaluation of CHF3381 as novel antiepileptic agent. Neuropharmacol, 40 (7), 866–878.
  • Wang, C.G., et al., 2001. Molecular characterization of an anti-epilepsy peptide from the scorpion Buthus martensi (Karsch). European journal of biochemistry, 268 (8), 2480–2485.
  • Wang, R., et al., 1994. Cardiovascular effects of Buthus martensi (Karsch) scorpion venom. Toxicon, 32 (2), 191–200.
  • Wang, W.X. and Ji, Y.H., 2005. Scorpion venom induces glioma cell apoptosis in vivo and inhibits glioma tumor growth in vitro. Journal of neuro-oncology, 73 (1), 1–7.
  • Xie, J. and Herbert, T.P., 2012. The role of mammalian target of rapamycin (mTOR) in the regulation of pancreatic β-cell mass: implications in the development of type-2 diabetes. Cellular and molecular life sciences: CMLS, 69 (8), 1289–1304.
  • Xiong, Y.M., et al., 1999. Molecular characterization of a new excitatory insect neurotoxin with an analgesic effect on mice from the scorpion Buthus martensi Karsch. Toxicon, 37 (8), 1165–1180.
  • Xueli, W., Bin, G., and Shunyi, Z., 2017. Exon shuffling and origin of scorpion venom biodiversity. Toxins, 9 (10), 1–11.
  • Yi, H., et al., 2007. Interaction simulation of hERG K + channel with its specific BeKm–1 peptide: insights into the selectivity of molecular recognition. Journal of proteome research, 6 (2), 611–620.
  • Yi, H., et al., 2008. Molecular basis of inhibitory peptide maurotoxin recognizing Kv1.2 channel explored by ZDOCK and molecular dynamic simulations. Proteins: structure, function, and bioinformatics, 70 (3), 844–854.
  • Yin, S.J., et al., 2008. Different residues in channel turret determining the selectivity of ADWX–1 inhibitor peptide between Kv1.1 and Kv1.3 channels. Journal of proteome research, 7 (11), 4890–4897.
  • Yu, F.H. and Catterall, W.A., 2003. Overview of the voltage-gated sodium channel family. Genome biology, 4 (3), 207.
  • Zabihollahi, Z., et al., 2016. Venom components of Iranian scorpion Hemiscorpius lepturus inhibit the growth and replication of human immunodeficiency virus 1 (HIV-1). Iranian biomedical journal, 20 (5), 259–265.
  • Zamponi, G.W. and Simms, B.A., 2014. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron, 82 (1), 24–45.
  • Zargan, J., et al., 2011. Scorpion venom (Odontobuthus doriae) induces apoptosis by depolarization of mitochondria and reduces S-phase population in human breast cancer cells (MCF-7). Toxicology in vitro: an international journal published in association with BIBRA, 25 (8), 1748–1756.
  • Zeng, X.C., et al., 2004. Identification and functional characterization of novel scorpion venom peptides with no disulfide bridge from Buthus martensii. Peptides, 25 (2), 143–150.
  • Zhang, L., et al., 2015. Unique diversity of the venom peptides from the scorpion Androctonus bicolor revealed by transcriptomic and proteomic analysis. Journal of proteomics, 128, 231–250.
  • Zhang, W.D., et al., 2005. Polypeptide extract from scorpion venom inhibits angiogenesis and angiogenesis-dependent tumor growth. Chinese pharmacological bulletin, 22, 708–711.
  • Zhang, Y.Y., et al., 2009. Anti-proliferation effect of polypeptide extracted from scorpion venom on human prostate cancer cells in vitro. Journal of clinical medicine research, 1 (1), 24–31.
  • Zoccal, K.F., et al., 2016. Opposing roles of LTB4 and PGE2 in regulating the inflammasome-dependent scorpion venom-induced mortality. Nature communications, 7, 10760.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.