148
Views
2
CrossRef citations to date
0
Altmetric
Review Articles

Spider toxins targeting ligand-gated ion channels

Pages 131-144 | Received 28 Jun 2018, Accepted 03 Feb 2019, Published online: 07 Mar 2019

References

  • Abe, T., Kawai, N. and Miwa, A., 1983. Effects of a spider toxin on the glutaminergic synapse of lobster muscle. The Journal of Physiology, 339 (1), 243–252.
  • Adams, M.E., 2004. Agatoxins: ion channel specific toxins from the American funnel web spider, Agelenopsis aperta. Toxicon, 43 (5), 509–525.
  • Adams, D.J. and Berecki, G., 2013. Mechanisms of conotoxin inhibition of N-type (Ca(v)2.2) calcium channels. Biochim Biophys Acta, 1828 (7), 1619–1628.
  • Adams, M.E., Herold, E.E. and Venema, V.J., 1989. Two classes of channel-specific toxins from funnel web spider venom. Journal of Comparative Physiology. A, Sensory, Neural, and Behavioral Physiology, 164 (3), 333–342.
  • Albuquerque, E.X., et al., 2009. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiological Reviews, 89 (1), 73–120.
  • Anis, N., et al., 1990. Structure-activity-relationships of philanthotoxin analogs and polyamines on N-methyl-D-aspartate and nicotinic acetylcholine-receptors. Journal of Pharmacology and Experimental Therapeutics, 254 (3), 764–773.
  • Aramaki, Y., et al., 1986. Chemical characterization of spider toxin, Jstx and Nstx. Proceedings of the Japan Academy Series B-Physical and Biological Sciences, 62 (9), 359–362.
  • Avila, A.M., et al., 2003. Differential regulation of nicotinic acetylcholine receptors in PC12 cells by nicotine and nerve growth factor. Molecular Pharmacology, 64 (4), 974–986.
  • Azam, L. and McIntosh, J.M., 2009. Alpha-conotoxins as pharmacological probes of nicotinic acetylcholine receptors. Acta Pharmacologica Sinica, 30 (6), 771–783.
  • Barygin, O.I., Grishin, E.V. and Tikhonov, D.B., 2011. Argiotoxin in the closed AMPA receptor channel: experimental and modeling study. Biochemistry, 50 (38), 8213–8220.
  • Bertrand, D., 2002. Neuronal nicotinic acetylcholine receptors and epilepsy. Epilepsy Currents, 2 (6), 191–193.
  • Binda, N.S., et al., 2016. PhTx3-4, a spider toxin calcium channel blocker, reduces NMDA-induced injury of the retina. Toxins (Basel), 8 (3), 70.
  • Bindokas, V.P. and Adams, M.E., 1989. omega-Aga-I: a presynaptic calcium channel antagonist from venom of the funnel web spider, Agelenopsis aperta. Journal of Neurobiology, 20 (4), 171–188.
  • Bixel, M.G., et al., 2001. Location of the polyamine binding site in the vestibule of the nicotinic acetylcholine receptor ion channel. Journal of Biological Chemistry, 276 (9), 6151–6160.
  • Blaschke, M., et al., 1993. A single amino acid determines the subunit-specific spider toxin block of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate/kainate receptor channels. Proceedings of the National Academy of the Sciences of the United States of America, 90 (14), 6528–6532.
  • Bormann, J., 1989. Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels. European Journal of Pharmacology, 166 (3), 591–592.
  • Boue-Grabot, E., Archambault, V. and Seguela, P., 2000. A protein kinase C site highly conserved in P2X subunits controls the desensitization kinetics of P2X(2) ATP-gated channels. Journal of Biological Chemistry, 275 (14), 10190–10195.
  • Bowie, D., 2008. Ionotropic glutamate receptors & CNS disorders. CNS & Neurological Disorders Drug Targets, 7 (2), 129–143.
  • Bowie, D. and Mayer, M.L., 1995. Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron, 15 (2), 453–462.
  • Brackley, P.T., et al., 1993. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. The Journal of Pharmacology and Experimental Therapeutics, 266 (3), 1573–1580.
  • Brown, D.A. and Yule, D.I., 2010. Protein kinase A regulation of P2X(4) receptors: requirement for a specific motif in the C-terminus. Biochimica et Biophysica Acta, 1803 (2), 275–287.
  • Budd, T., et al., 1988. Isolation and characterisation of glutamate receptor antagonists from venoms of orb-web spiders. Brain Research, 448 (1), 30–39.
  • Burnashev, N., Villarroel, A. and Sakmann, B., 1996. Dimensions and ion selectivity of recombinant AMPA and kainate receptor channels and their dependence on Q/R site residues. The Journal of Physiology, 496 (1), 165–173.
  • Burnstock, G., 2009. Purinergic receptors and pain. Current Pharmaceutical Design, 15 (15), 1717–1735.
  • Burnstock, G. and Knight, G.E., 2004. Cellular distribution and functions of P2 receptor subtypes in different systems. International Review of Cytology, 240, 31–304.
  • Burnstock, G., et al., 2014. ATP-gated P2X receptors in health and disease. Frontiers in Cellular Neuroscience, 8, 204.
  • Calabresi, P., et al., 2003. Ionotropic glutamate receptors: still a target for neuroprotection in brain ischemia? Insights from in vitro studies. Neurobiology of Disease, 12 (1), 82–88.
  • Chang, P.K., Verbich, D. and McKinney, R.A., 2012. AMPA receptors as drug targets in neurological disease – advantages, caveats, and future outlook. European Journal of Neuroscience, 35 (12), 1908–1916.
  • Changeux, J.P., 2010. Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nature Reviews Neuroscience, 11 (6), 389–401.
  • Chataigneau, T., Lemoine, D. and Grutter, T., 2013. Exploring the ATP-binding site of P2X receptors. Frontiers in Cellular Neuroscience, 7, 273
  • Cockayne, D.A., et al., 2000. Urinary bladder hyporeflexia and reduced pain-related behaviour in P2X3-deficient mice. Nature, 407 (6807), 1011–1015.
  • Coddou, C., Stojilkovic, S.S. and Huidobro-Toro, J.P., 2011a. Allosteric modulation of ATP-gated P2X receptor channels. Reviews in the Neurosciences, 22 (3), 335–354.
  • Coddou, C., et al., 2011b. Activation and regulation of purinergic P2X receptor channels. Pharmacological Reviews, 63 (3), 641–683.
  • Collingridge, G.L., et al., 2009. A nomenclature for ligand-gated ion channels. Neuropharmacology, 56 (1), 2–5.
  • Courjaret, R. and Lapied, B., 2001. Complex intracellular messenger pathways regulate one type of neuronal alpha-bungarotoxin-resistant nicotinic acetylcholine receptors expressed in insect neurosecretory cells (dorsal unpaired median neurons). Molecular Pharmacology, 60 (1), 80–91.
  • Coyle, J.T., 2006. Glutamate and schizophrenia: beyond the dopamine hypothesis. Cellular and Molecular Neurobiology, 26 (4–6), 365–384.
  • Craik, D.J., Daly, N.L. and Waine, C., 2001. The cystine knot motif in toxins and implications for drug design. Toxicon: Official Journal of the International Society on Toxinology, 39 (1), 43–60.
  • Dani, J.A., 2001. Overview of nicotinic receptors and their roles in the central nervous system. Biological Psychiatry, 49 (3), 166–174.
  • Dani, J.A. and Bertrand, D., 2007. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47 (1), 699–729.
  • de Castro Junior, C.J., et al., 2008. Tx3-4 a toxin from the venom of spider Phoneutria nigriventer blocks calcium channels associated with exocytosis. Neuroscience Letters, 439 (2), 170–172.
  • de Figueiredo, S.G., et al., 2001. Purification and amino acid sequence of a highly insecticidal toxin from the venom of the brazilian spider Phoneutria nigriventer which inhibits NMDA-evoked currents in rat hippocampal neurones. Toxicon, 39 (2–3), 309–317.
  • DiAntonio, A., et al., 1999. Glutamate receptor expression regulates quantal size and quantal content at the Drosophila neuromuscular junction. The Journal of Neuroscience, 19 (8), 3023–3032.
  • Egan, T.M. and Khakh, B.S., 2004. Contribution of calcium ions to P2X channel responses. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24 (13), 3413–3420.
  • Egebjerg, J. and Heinemann, S.F., 1993. Ca2+ permeability of unedited and edited versions of the kainate selective glutamate receptor GluR6. Proceedings of the National Academy of the Sciences of the United States of America, 90 (2), 755–759.
  • Erb, L., et al., 2006. P2 receptors: intracellular signaling. Pflugers Archiv: European Journal of Physiology, 452 (5), 552–562.
  • Fabbretti, E., 2013. ATP P2X3 receptors and neuronal sensitization. Frontiers in Cellular Neuroscience, 7, 236
  • Fagni, L. and Bockaert, J., 1995. Action of argiotoxin636 on N-methyl-D-aspartate channels in cerebellar cells. Neuroreport, 6 (7), 1037–1040.
  • Fatehi, M., et al., 1997. Polyamine FTX-3.3 and polyamine amide sFTX-3.3 inhibit presynaptic calcium currents and acetylcholine release at mouse motor nerve terminals. Neuropharmacology, 36 (2), 185–194.
  • Gomez, M.V., et al., 2002. Phoneutria nigriventer venom: a cocktail of toxins that affect ion channels. Cellular and Molecular Neurobiology, 22 (5–6), 579–588.
  • Granja, R., et al., 1995. omega-Agatoxin IVA blocks nicotinic receptor channels in bovine chromaffin cells. FEBS Letters, 362 (1), 15–18.
  • Green, A.C., Nakanishi, K. and Usherwood, P.N., 1996. Polyamine amides are neuroprotective in cerebellar granule cell cultures challenged with excitatory amino acids. Brain Res, 717 (1–2), 135–146.
  • Grishin, E.V., et al., 1986. [Structural-functional characteristics of argiopine – the ion channel blockers from the spider Argiope lobata venom]. Bioorganicheskaya Khimiya, 12 (8), 1121–1124.
  • Grishin, E.V., et al., 2010. Novel peptide from spider venom inhibits P2X3 receptors and inflammatory pain. Annals of Neurology, 67 (5), 680–683.
  • Grishin, E.V., Volkova, T.M. and Arseniev, A.S., 1989. Isolation and structure analysis of components from venom of the spider Argiope lobata. Toxicon: Official Journal of the International Society on Toxinology, 27 (5), 541–549.
  • Gu, J.G., et al., 1996. Synaptic strengthening through activation of Ca2+-permeable AMPA receptors. Nature, 381 (6585), 793–796.
  • Habermacher, C., et al., 2016. Molecular structure and function of P2X receptors. Neuropharmacology, 104, 18–30.
  • Han, T.H., et al., 2015. Functional reconstitution of Drosophila melanogaster NMJ glutamate receptors. Proceedings of the National Academy of the Sciences of the United States of America, 112 (19), 6182–6187.
  • Herlitze, S., et al., 1993. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron, 10 (6), 1131–1140.
  • Higuchi, M., et al., 1993. RNA editing of AMPA receptor subunit GluR-B: a base-paired intron-exon structure determines position and efficiency. Cell, 75 (7), 1361–1370.
  • Himi, T., et al., 1990. Spider toxin (JSTX-3) inhibits the convulsions induced by glutamate agonists. Journal of Neural Transmission, 80 (2), 95–104.
  • Hollmann, M. and Heinemann, S., 1994. Cloned glutamate receptors. Annual Review of Neuroscience, 17, 31–108.
  • Huang, H., Lee, S.C. and Yang, X.L., 2005. Modulation by melatonin of glutamatergic synaptic transmission in the carp retina. The Journal of Physiology, 569 (Pt 3), 857–871.
  • Huettner, J.E., 2015. Glutamate receptor pores. The Journal of Physiology, 593 (1), 49–59.
  • Hume, R.I., Dingledine, R. and Heinemann, S.F., 1991. Identification of a site in glutamate receptor subunits that controls calcium permeability. Science, 253 (5023), 1028–1031.
  • Jasys, V.J., et al., 1990. Isolation, structure elucidation, and synthesis of novel hydroxylamine-containing polyamines from the venom of the agelenopsis-aperta spider. Journal of the American Chemical Society, 112 (18), 6696–6704.
  • Jonas, P. and Burnashev, N., 1995. Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron, 15 (5), 987–990.
  • Jones, M.G. and Lodge, D., 1991. Comparison of some arthropod toxins and toxin fragments as antagonists of excitatory amino acid-induced excitation of rat spinal neurones. European Journal of Pharmacology, 204 (2), 203–209.
  • Jones, A.K. and Sattelle, D.B., 2010. Diversity of insect nicotinic acetylcholine receptor subunits. Advances in Experimental Medicine and Biology, 683, 25–43.
  • Kabanova, N.V., et al., 2012. Modulation of P2X3 receptors by spider toxins. Biochimica et Biophysica Acta, 1818 (11), 2868–2875.
  • Kachel, H.S., et al., 2016. Block of nicotinic acetylcholine receptors by philanthotoxins is strongly dependent on their subunit composition. Science Reports, 6, 38116.
  • Kaczmarek-Hajek, K., et al., 2012. Molecular and functional properties of P2X receptors – recent progress and persisting challenges. Purinergic Signal, 8 (3), 375–417.
  • Kamboj, S.K., Swanson, G.T. and Cull-Candy, S.G., 1995. Intracellular spermine confers rectification on rat calcium-permeable AMPA and kainate receptors. The Journal of Physiology, 486 (2), 297–303.
  • Kanai, H., et al., 1992. An analogue of Joro spider toxin selectively suppresses hippocampal epileptic discharges induced by quisqualate. Brain Research, 581 (1), 161–164.
  • Kawai, N., Miwa, A. and Abe, T., 1983. Specific antagonism of the glutamate receptor by an extract from the venom of the spider Araneus ventricosus. Toxicon, 21 (3), 438–440.
  • Kawai, N., et al., 1984. Spider toxin (JSTX) on the glutamate synapse. Journal de Physiologie, 79 (4), 228–231.
  • Kawai, N., Niwa, A. and Abe, T., 1982. Spider venom contains specific receptor blocker of glutaminergic synapses. Brain Research, 247 (1), 169–171.
  • Khakh, B.S. and North, R.A., 2006. P2X receptors as cell-surface ATP sensors in health and disease. Nature, 442 (7102), 527–532.
  • Kitaguchi, T. and Swartz, K.J., 2005. An inhibitor of TRPV1 channels isolated from funnel Web spider venom. Biochemistry, 44 (47), 15544–15549.
  • Kohler, M., et al., 1993. Determinants of Ca2+ permeability in both TM1 and TM2 of high affinity kainate receptor channels: diversity by RNA editing. Neuron, 10 (3), 491–500.
  • Koukouli, F., et al., 2017. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nature Medicine, 23 (3), 347–354.
  • Kumar, J. and Mayer, M.L., 2013. Functional insights from glutamate receptor ion channel structures. Annual Review of Physiology, 75, 313–337.
  • Leslie, F.M., Mojica, C.Y. and Reynaga, D.D., 2013. Nicotinic receptors in addiction pathways. Molecular Pharmacology, 83 (4), 753–758.
  • Liang, S.P., et al., 2000. The presynaptic activity of huwentoxin-I, a neurotoxin from the venom of the chinese bird spider Selenocosmia huwena. Toxicon, 38 (9), 1237–1246.
  • Liang, S.P., et al., 1993. Properties and amino acid sequence of huwentoxin-I, a neurotoxin purified from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon, 31 (8), 969–978.
  • Lipton, S.A., 2007. Pathologically activated therapeutics for neuroprotection. Nature Reviews. Neuroscience, 8 (10), 803–808.
  • Littleton, J.T. and Ganetzky, B., 2000. Ion channels and synaptic organization: analysis of the Drosophila genome. Neuron, 26 (1), 35–43.
  • Liu, M., et al., 1997. Potent and voltage-dependent block by philanthotoxin-343 of neuronal nicotinic receptor/channels in PC12 cells. British Journal of Pharmacology, 122 (2), 379–385.
  • Llinas, R., et al., 1989a. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel-web spider poison. Proceedings of the National Academy of the Sciences of the United States of America, 86 (5), 1689–1693.
  • Llinas, R.R., Sugimori, M. and Cherksey, B., 1989b. Voltage-dependent calcium conductances in mammalian neurons. Annals of the New York Academy of Sciences, 560, 103–111.
  • Lombardo, S. and Maskos, U., 2015. Role of the nicotinic acetylcholine receptor in Alzheimer's disease pathology and treatment. Neuropharmacology, 96 (Pt B), 255–262.
  • Luscher, C. and Malenka, R.C., 2012. NMDA receptor-dependent long-term potentiation and long-term depression (LTP/LTD). Cold Spring Harbor Perspectives in Biology, 4 (6), a005710.
  • Mafra, R.A., et al., 1999. PhTx4, a new class of toxins from Phoneutria nigriventer spider venom, inhibits the glutamate uptake in rat brain synaptosomes. Brain Research, 831 (1–2), 297–300.
  • Mellor, I.R., et al., 2003. Modification of the philanthotoxin-343 polyamine moiety results in different structure-activity profiles at muscle nicotinic ACh, NMDA and AMPA receptors. Neuropharmacology, 44 (1), 70–80.
  • Mellor, I.R. and Usherwood, P.N., 2004. Targeting ionotropic receptors with polyamine-containing toxins. Toxicon, 43 (5), 493–508.
  • Metzger, F., Wiese, S. and Sendtner, M., 1998. Effect of glutamate on dendritic growth in embryonic rat motoneurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 18 (5), 1735–1742.
  • Morris, R.G., 2013. NMDA receptors and memory encoding. Neuropharmacology, 74, 32–40.
  • Mortari, M.R., et al., 2007. Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacology and Therapeutics, 114 (2), 171–183.
  • Nakanishi, K., et al., 1994. Bioorganic Studies of transmitter receptors with philanthotoxin analogs. Pure and Applied Chemistry, 66 (4), 671–678.
  • Nelson, J.K., et al., 2009. Synthesis and biological activity of argiotoxin 636 and analogues: selective antagonists for ionotropic glutamate receptors. Angewandte Chemie International Edition, 48 (17), 3087–3091.
  • Norager, N.G., et al., 2013. Development of potent fluorescent polyamine toxins and application in labeling of ionotropic glutamate receptors in hippocampal neurons. ACS Chemical Biology, 8 (9), 2033–2041.
  • Norris, T.M., et al., 1996. Block of high-threshold calcium channels by the synthetic polyamines sFTX-3.3 and FTX-3.3. Molecular Pharmacology, 50 (4), 939–946.
  • North, R.A., 2002. Molecular physiology of P2X receptors. Physiological Reviews, 82 (4), 1013–1067.
  • North, R.A., 2003. The P2X3 subunit: a molecular target in pain therapeutics. Current Opinion in Investigational Drugs (London, England: 2000), 4 (7), 833–840.
  • North, R.A., 2004. P2X3 receptors and peripheral pain mechanisms. The Journal of Physiology, 554 (Pt 2), 301–308.
  • North, R.A., 2016. P2X receptors. Philosophical Transactions of the Royal Society London B Biological Sciences, 371, 1700.
  • Oliveira, L.C., et al., 2003. PnTx4-3, a new insect toxin from Phoneutria nigriventer venom elicits the glutamate uptake inhibition exhibited by PhTx4 toxic fraction. Toxicon, 42 (7), 793–800.
  • Olsen, C.A., et al., 2011. Small molecules from spiders used as chemical probes. Angewandte Chemie (International Edition In English), 50 (48), 11296–11311.
  • Oparin, P.B., et al., 2016. Structure of purotoxin-2 from wolf spider: modular design and membrane-assisted mode of action in arachnid toxins. Biochemical Journal, 473 (19), 3113–3126.
  • Orth, A., Tapken, D. and Hollmann, M., 2013. The delta subfamily of glutamate receptors: characterization of receptor chimeras and mutants. European Journal of Neuroscience, 37 (10), 1620–1630.
  • Palma, M.S. and Nakajima, T., 2005. A natural combinatorial chemistry strategy in acylpolyamine toxins from Nephilinae orb-web spiders. Toxin Reviews, 24 (2), 209–234.
  • Pan-Hou, H., et al., 1989. A spider toxin (JSTX) inhibits L-glutamate uptake by rat brain synaptosomes. Brain Research, 476 (2), 354–357.
  • Paoletti, P., Bellone, C. and Zhou, Q., 2013. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Reviews Neuroscience, 14 (6), 383–400.
  • Pellegrini-Giampietro, D.E., 2003. An activity-dependent spermine-mediated mechanism that modulates glutamate transmission. Trends in Neurosciences, 26 (1), 9–11.
  • Peng, K., Chen, X.D. and Liang, S.P., 2001. The effect of Huwentoxin-I on Ca(2+) channels in differentiated NG108-15 cells, a patch-clamp study. Toxicon: Official Journal of the International Society on Toxinology, 39 (4), 491–498.
  • Pinheiro, P.S. and Mulle, C., 2008. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nature Reviews Neuroscience, 9 (6), 423–436.
  • Poulsen, M.H., et al., 2015. Binding of ArgTX-636 in the NMDA receptor ion channel. Journal of Molecular Biology, 427 (1), 176–189.
  • Poulsen, M.H., et al., 2013. Structure-activity relationship studies of argiotoxins: selective and potent inhibitors of ionotropic glutamate receptors. Journal of Medicinal Chemistry, 56 (3), 1171–1181.
  • Qu, Y.X., et al., 1997. Proton nuclear magnetic resonance studies on huwentoxin-I from the venom of the spider Selenocosmia huwena.2. Three-dimensional structure in solution. Journal of Protein Chemistry, 16 (6), 565–574.
  • Quik, M., Bordia, T. and O’Leary, K., 2007. Nicotinic receptors as CNS targets for Parkinson's disease. Biochemical Pharmacology, 74 (8), 1224–1234.
  • Quistad, G.B., et al., 1990. Structures of paralytic acylpolyamines from the spider Agelenopsis aperta. Biochemical and Biophysical Research Communications, 169 (1), 51–56.
  • Raggenbass, M. and Bertrand, D., 2002. Nicotinic receptors in circuit excitability and epilepsy. Journal of Neurobiology, 53 (4), 580–589.
  • Rash, L.D. and Hodgson, W.C., 2002. Pharmacology and biochemistry of spider venoms. Toxicon: Official Journal of the International Society on Toxinology, 40 (3), 225–254.
  • Reis, H.J., et al., 1999. Inhibition of glutamate uptake by a polypeptide toxin (phoneutriatoxin 3-4) from the spider Phoneutria nigriventer. Biochemical Journal, 343 (2), 413–418.
  • Roberts, J.A., et al., 2006. Molecular properties of P2X receptors. Pflugers Archiv: European Journal of Physiology, 452 (5), 486–500.
  • Rocha, E.S.T.A., et al., 2013. VdTX-1, a reversible nicotinic receptor antagonist isolated from venom of the spider Vitalius dubius (Theraphosidae). Toxicon, 70, 135–141.
  • Rogers, S.W., et al., 1992. The expression of nicotinic acetylcholine receptors by PC12 cells treated with NGF. The Journal of Neuroscience, 12 (12), 4611–4623.
  • Rogoza, L.N., Salakhutdinov, N.F. and Tolstikov, G.A., 2006. [Polymethyleneamine alkaloids of animal origin: II. Polyamine neurotoxins]. Bioorganicheskaia Khimiia, 32 (1), 27–41.
  • Roy, J., et al., 1998. Glutamate potentiates the toxicity of mutant Cu/Zn-superoxide dismutase in motor neurons by postsynaptic calcium-dependent mechanisms. The Journal of Neuroscience, 18 (23), 9673–9684.
  • Sahara, Y., et al., 1991. A voltage-clamp study of the effects of Joro spider toxin and zinc on excitatory synaptic transmission in CA1 pyramidal cells of the guinea pig hippocampal slice. Neuroscience Research, 10 (3), 200–210.
  • Saito, M., et al., 1989. Effects of a spider toxin (JSTX) on hippocampal CA1 neurons in vitro. Brain Research, 481 (1), 16–24.
  • Shudo, K., et al., 1987. Newly synthesized analogues of the spider toxin block the crustacean glutamate receptor. Neuroscience Research, 5 (1), 82–85.
  • Silva, F.R., et al., 2016. The Phoneutria nigriventer spider toxin, PnTx4-5-5, promotes neuronal survival by blocking NMDA receptors. Toxicon, 112, 16–21.
  • Skinner, W.S., et al., 1989. Purification and characterization of two classes of neurotoxins from the funnel web spider, Agelenopsis aperta. The Journal of Biological Chemistry, 264 (4), 2150–2155.
  • Sobolevsky, A.I., Rosconi, M.P. and Gouaux, E., 2009. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature, 462 (7274), 745–756.
  • Sommer, B., et al., 1991. RNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell, 67 (1), 11–19.
  • Sorkin, L.S., Yaksh, T.L. and Doom, C.M., 2001. Pain models display differential sensitivity to Ca2+-permeable non-NMDA glutamate receptor antagonists. Anesthesiology, 95 (4), 965–973.
  • Souslova, V., et al., 2000. Warm-coding deficits and aberrant inflammatory pain in mice lacking P2X3 receptors. Nature, 407 (6807), 1015–1017.
  • Stromgaard, K., Jensen, L.S. and Vogensen, S.B., 2005. Polyamine toxins: development of selective ligands for ionotropic receptors. Toxicon, 45 (3), 249–254.
  • Surprenant, A. and North, R.A., 2009. Signaling at purinergic P2X receptors. Annual Review of Physiology, 71, 333–359.
  • Traynelis, S.F., et al., 2010. Glutamate receptor ion channels: structure, regulation, and function. Pharmacology Reviews, 62 (3), 405–496.
  • Twomey, E.C., et al., 2018. Mechanisms of channel block in calcium-permeable AMPA receptors. Neuron, 99 (5), 956–968.
  • Usherwood, P.N., Machili, P. and Leaf, G., 1968. L-Glutamate at insect excitatory nerve-muscle synapses. Nature, 219 (5159), 1169–1172.
  • Valera, S., et al., 1994. A new class of ligand-gated ion channel defined by P2x receptor for extracellular ATP. Nature, 371 (6497), 516–519.
  • Van den Bosch, L. and Robberecht, W., 2000. Different receptors mediate motor neuron death induced by short and long exposures to excitotoxicity. Brain Research Bulletin, 53 (4), 383–388.
  • Varga, E., et al., 2015. Amyloid-beta1-42 disrupts synaptic plasticity by altering glutamate recycling at the synapse. Journal of Alzheimer's Disease, 45 (2), 449–456.
  • Vincent, P. and Mulle, C., 2009. Kainate receptors in epilepsy and excitotoxicity. Neuroscience, 158 (1), 309–323.
  • Volianskis, A., et al., 2015. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Research, 1621, 5–16.
  • Wang, M., et al., 2012. The effects of huwentoxin-I on the voltage-gated sodium channels of rat hippocampal and cockroach dorsal unpaired median neurons. Peptides, 34 (1), 19–25.
  • Waxman, E.A. and Lynch, D.R., 2005. N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease. The Neuroscientist, 11 (1), 37–49.
  • Webb, T.E., et al., 1993. Cloning and functional expression of a brain G-protein-coupled ATP receptor. FEBS Letters, 324 (2), 219–225.
  • Wilson, D., et al., 2017. The aromatic head group of spider toxin polyamines influences toxicity to cancer cells. Toxins (Basel), 9 (11).
  • Windley, M.J., et al., 2017. Lethal effects of an insecticidal spider venom peptide involve positive allosteric modulation of insect nicotinic acetylcholine receptors. Neuropharmacology, 127, 224–242.
  • Xiong, X.F., et al., 2014. Structure-activity relationship study of spider polyamine toxins as inhibitors of ionotropic glutamate receptors. ChemMedChem, 9 (12), 2661–2670.
  • Zhou, P.A., et al., 1997. Blockade of neuromuscular transmission by huwentoxin-I, purified from the venom of the Chinese bird spider Selenocosmia huwena. Toxicon, 35 (1), 39–45.
  • Zhuo, M., 2017. Ionotropic glutamate receptors contribute to pain transmission and chronic pain. Neuropharmacology, 112( Pt A): 228–234.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.