143
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Scorpion envenomation: a deadly illness requiring an effective therapy

ORCID Icon & ORCID Icon
Pages 592-605 | Received 08 Jun 2020, Accepted 21 Jul 2020, Published online: 06 Aug 2020

References

  • Abbas, A. K., Lichtman, A.H.H., and Pillai, S., 2014. Cellular and molecular immunology. 8th ed., Elsevier. Philadelphia, PA.
  • Abbas, N., et al. 2011. Characterization of three “birtoxin-like” toxins from the Androctonus amoreuxi scorpion venom. Peptides, 32 (5), 911–919.
  • Abderrazek, R.B., et al. 2009. Identification of potent nanobodies to neutralize the most poisonous polypeptide from scorpion venom. The biochemical journal, 424 (2), 263–272.
  • Abib, L. and Laraba-Djebari, F., 2003. Effect of gamma irradiation on toxicity and immunogenicity of Androctonus australis hector venom. Canadian journal of physiology and pharmacology, 81 (12), 1118–1124.
  • Aboumaâd, B., et al. 2014. Clinical comparison of scorpion envenomation by Androctonus mauritanicus and Buthus occitanus in children. Toxicon, 90, 337–343.
  • Abroug, F., et al. 1991. Cardiac dysfunction and pulmonary edema following scorpion envenomation. Chest, 100 (4), 1057–1059.
  • Abroug, F., et al. 1999. Serotherapy in scorpion envenomation: a randomised controlled trial. The Lancet, 354 (9182), 906–909.
  • Abroug, F., et al. 2015. Scorpion-related cardiomyopathy: clinical characteristics, pathophysiology, and treatment. Clinical toxicology, 53 (6), 511–518.
  • Abroug, F., et al. 2020. Scorpion envenomation: state of the art. Intensive Care Medicine, 46 (3), 401–410.
  • Adi-Bessalem, S., Hammoudi-Triki, D., and Laraba-Djebari, F., 2008. Pathophysiological effects of Androctonus australis hector scorpion venom: tissue damages and inflammatory response. Experimental and toxicologic pathology: official journal of the Gesellschaft Fur Toxikologische Pathologie, 60 (4–5), 373–380.
  • Ait-Lounis, A. and Laraba-Djebari, F., 2015. TNF-alpha modulates adipose macrophage polarization to M1 phenotype in response to scorpion venom. Inflammation research, 64 (11), 929–936.
  • Al-Asmari, A., et al. 2017. Saudi medicinal plants for the treatment of scorpion sting envenomation. Saudi journal of biological sciences, 24 (6), 1204–1211.
  • Alvarez, A., et al. 2013. IgY antibodies anti-Tityus caripitensis venom: purification and neutralization efficacy. Toxicon: official journal of the International Society on Toxinology, 74, 208–214.
  • Alvarez, A., et al. 2015. Poultry igy alternatives to antivenom production. In: Scorpion venoms. Dordrecht, The Netherlands: Springer, 161–178.
  • Amaro, I., et al. 2011. Isolation and characterization of a human antibody fragment specific for Ts1 toxin from Tityus serrulatus scorpion. Immunology letters, 139 (1–2), 73–79.
  • Araújo, A.S., et al. 2010. Brazilian IgY-Bothrops antivenom: studies on the development of a process in chicken egg yolk. Toxicon: official journal of the International Society on Toxinology, 55 (4), 739–744.
  • Ayari-Riabi, S., et al. 2016. Venom conjugated polylactide applied as biocompatible material for passive and active immunotherapy against scorpion envenomation. Vaccine, 34 (15), 1810–1815.
  • Bachsais, N., Boussag-Abib, L., and Laraba-Djebari, F., 2017. Safety and efficiency of active immunization with detoxified antigen against scorpion venom: side effect evaluation. Inflammation research, 66 (9), 765–774.
  • Bahloul, M., et al. 2004. Evidence of myocardial ischaemia in severe scorpion envenomation. Myocardial perfusion scintigraphy study. Intensive care medicine, 30 (3), 461–467.
  • Bahloul, M., et al. 2013. Pulmonary edema following scorpion envenomation: mechanisms, clinical manifestations, diagnosis and treatment. International journal of cardiology, 162 (2), 86–91.
  • Bahraoui, E., et al. 1988. Monoclonal antibodies to scorpion toxins. Characterization and molecular mechanisms of neutralization. Journal of immunology, 141 (1), 214–220.
  • Bawaskar, H.S. and Bawaskar, P.H., 2011. Efficacy and safety of scorpion antivenom plus prazosin compared with prazosin alone for venomous scorpion (Mesobuthus tamulus) sting: randomised open label clinical trial. BMJ, 342 (3), c7136.
  • Bechis, G., et al. 1984. Amino acid sequence of toxin VII, A β-toxin from the venom of the scorpton Tityus serrulatus. Biochemical and biophysical research communications, 122 (3), 1146–1153.
  • Bekkari, N., Martin-Eauclaire, M.F., and Laraba-Djebari, F., 2015. Complement system and immunological mediators: their involvements in the induced inflammatory process by Androctonus australis hector venom and its toxic components. Experimental and toxicologic pathology: official journal of the Gesellschaft Fur Toxikologische Pathologie, 67 (7–8), 389–397.
  • Borges, A., et al. 2006. Diversity of long-chain toxins in Tityus zulianus and Tityus discrepans venoms (Scorpiones, Buthidae): molecular, immunological, and mass spectral analyses. Comparative biochemistry and physiology. Toxicology & pharmacology, 142 (3–4), 240–252.
  • Bouaziz, M., et al. 2006. Factors associated with pulmonary edema in severe scorpion sting patients - A multivariate analysis of 428 cases. Clinical toxicology, 44 (3), 293–300.
  • Bouaziz, M., et al. 2008. Epidemiological, clinical characteristics and outcome of severe scorpion envenomation in South Tunisia: multivariate analysis of 951 cases. Toxicon: official journal of the International Society on Toxinology, 52 (8), 918–926.
  • Boucherit, H., Benabdeli, K., and Benaradj, A., 2017. Contribution to the phytotherapy against scorpion sting envenomation in the Naama region (Algeria). Lazaroa, 38 (1), 75–82.
  • Boyer, L., et al. 2013. Safety of intravenous equine F(ab’)2: insights following clinical trials involving 1534 recipients of scorpion antivenom. Toxicon: official journal of the International Society on Toxinology, 76, 386–393. Elsevier Ltd,
  • Boyer, L.V., et al. 2009. Antivenom for critically ill children with neurotoxicity from scorpion stings. The New England journal of medicine, 360 (20), 2090–2098.
  • Butt, M.A., et al. 2015. Ethnomedicinal uses of plants for the treatment of snake and scorpion bite in Northern Pakistan. Journal of ethnopharmacology, 168, 164–181. Elsevier Ireland Ltd,
  • Carroll, S.B., et al. 1992. Comparison of the purity and efficacy of affinity purified avian antivenoms with commercial equine crotalid antivenoms. Toxicon: official journal of the International Society on Toxinology, 30 (9), 1017–1025.
  • Chaïr-Yousfi, I., Laraba-Djebari, F., and Hammoudi-Triki, D., 2015. Androctonus australis hector venom contributes to the interaction between neuropeptides and mast cells in pulmonary hyperresponsiveness. International immunopharmacology, 25 (1), 19–29.
  • Chakroun-Walha, O., et al. 2018. Update on the epidemiology of scorpion envenomation in the south of Tunisia. Wilderness & environmental medicine, 29 (1), 29–35.
  • Chavez-Olortegui, C., et al. 1991. In vivo protection against scorpion toxins by liposomal immunization. Vaccine, 9 (12), 907–910.
  • Chavez-Olortegui, C., et al. 1998. ELISA for the detection of venom antigens in experimental and clinical envenoming by Loxosceles intermedia spiders. Toxicon: official journal of the International Society on Toxinology, 36 (4), 563–569.
  • Chippaux, J.-P., and Goyffon, M., 2008. Epidemiology of scorpionism: a global appraisal. Acta Tropica, 107 (2), 71–79.
  • Clot-Faybesse, O., et al. 1999. Monoclonal antibodies against the Androctonus australis hector scorpion neurotoxin I: characterisation and use for venom neutralisation. FEBS letters, 458 (3), 313–318.
  • Correa, M. et al. 1997. Biochemical and histopathological alterations induced in rats by Tityus serrulatus scorpion venom and its major neurotoxin tityustoxin-I. Toxicon: official journal of the International Society on Toxinology. 35 (7), 1053–1067.
  • Couraud, F., et al. 1982. Two types of scorpion toxin receptor sites, one related to the activation, the other to the inactivation of the action potential sodium channel. Toxicon: official journal of the International Society on Toxinology, 20 (1), 9–16.
  • Crest, M., et al. 1992. Kaliotoxin, a novel peptidyl inhibitor of neuronal BK-type Ca2+-activated K + channels characterized from Androctonus mauretanicus mauretanicus venom. Journal of biological chemistry, 267 (3), 1640–1647.
  • Cruse, J.M., et al. 1999. Types I, II, III, and IV Hypersensitivity. In: Atlas of immunology. Berlin, Germany: Springer, 225–245.
  • D’suze, G. et al. 2003. Relationship between plasmatic levels of various cytokines, tumour necrosis factor, enzymes, glucose and venom concentration following Tityus scorpion sting. Toxicon: official journal of the International Society on Toxinology, 41 (3), 367–375.
  • Daachi, F., et al. 2020. Immune-toxicity effects of scorpion venom on the hypothalamic pituitary adrenal axis during rest and activity phases in a rodent model. Comparative biochemistry and physiology. Toxicology & pharmacology, 235, 108787.
  • Devaux, C., et al. 2001. Construction and functional evaluation of a single-chain antibody fragment that neutralizes toxin AahI from the venom of the scorpion Androctonus australis hector. European journal of biochemistry, 268 (3), 694–702.
  • Elatrous, S., et al. 1999. Dobutamine in severe scorpion envenomation: effects on standard hemodynamics, right ventricular performance, and tissue oxygenation. Chest, 116 (3), 748–753.
  • Elatrous, S., et al. 2015. Study of severe scorpion envenoming following subcutaneous venom injection into dogs: hemodynamic and concentration/effect analysis. Toxicon: official journal of the International Society on Toxinology, 104, 1–6.
  • Elhag, D.E. and Mahmoud, R.A.K., 2017. Efficacy and stability of scorpion antivenom: at different storage conditions. Pharmaceutica analytica acta, 8 (12), 570.
  • Erridge, A. and Greer, J., 2002. Partnerships and public procurement: building social capital through supply relations. Public Administration, 80 (3), 503–522.
  • Fonseca, S.G., et al. 1997. Induction of neutralizing antibodies in mice immunized with scorpion toxins detoxified by liposomal entrapment. Brazilian journal of medical and biological research, 30 (7), 883–886.
  • Freire-Maia, L., Campos, J.A., and Amaral, C.F.S., 1994. Approaches to the treatment of scorpion envenoming. Toxicon: official journal of the International Society on Toxinology, 32 (9), 1009–1014.
  • Freitas, T.V., et al. 1989. Use of liposomes for protective immunisation against Crotalus durissus (tropical rattlesnake) venom. Toxicon: official journal of the International Society on Toxinology, 27 (3), 341–347.
  • Fukuhara, Y. and Dellalibera-Joviliano, R., 2004. The kinin system in the envenomation caused by the Tityus serrulatus scorpion sting. Toxicology and Applied Pharmacology, 196 (3), 390–395.
  • Fukuhara, Y.D.M., et al. 2003. Increased plasma levels of IL-1β, IL-6, IL-8, IL-10 and TNF-α in patients moderately or severely envenomed by Tityus serrulatus scorpion sting. Toxicon: official journal of the International Society on Toxinology, 41 (1), 49–55.
  • Ghalim, N. et al., 2000. Scorpion envenomation and serotherapy in Morocco. The American journal of tropical medicine and hygiene. 62 (2), 277–283.
  • Gopalakrishnakone, P., et al. 2015. Scorpion venoms. Dordrecht, The Netherlands: Springer.
  • Goyffon, M., 2002. Le scorpionisme. Revue Française Des Laboratoires, 2002 (342), 41–48.
  • Gueron, M., et al. 1980. Hemodynamic and myocardial consequences of scorpion venom. The American journal of cardiology, 45 (5), 979–986.
  • Gueron, M., Ilia, R., and Sofer, S., 1992. The cardiovascular system after scorpion envenomation. A review. Journal of toxicology: clinical, 30 (2), 245–258.
  • Gurib-Fakim, A., 2006. Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular aspects of medicine, 27 (1), 1–93.
  • Gutiérrez, J.M., et al. 2017. Preclinical evaluation of the efficacy of antivenoms for snakebite envenoming: state-of-the-art and challenges ahead. Toxins, 9 (5), 163.
  • Hammoudi-Triki, D., et al. 2004. Epidemiological data, clinical admission gradation and biological quantification by ELISA of scorpion envenomations in Algeria: effect of immunotherapy. Transactions of the Royal Society of Tropical Medicine and Hygiene, 98 (4), 240–250.
  • Hammoudi-Triki, D., et al. 2007. Toxicokinetic and toxicodynamic analyses of Androctonus australis hector venom in rats: optimization of antivenom therapy. Toxicology and applied pharmacology, 218 (3), 205–214.
  • Heath, W. and Carbone, F., 2013. The skin-resident and migratory immune system in steady state and memory: innate lymphocytes, dendritic cells and T cells. Nature immunology, 14 (10), 978–985.
  • Hellal, H., et al. 2012. Epidemiological data on scorpion envenomation in Algeria. Bulletin de la Societe de Pathologie Exotique, 105 (3), 189–193.
  • Hmila, I., et al. 2010. A bispecific nanobody to provide full protection against lethal scorpion envenoming. FASEB journal: official publication of the Federation of American Societies for Experimental Biology, 24 (9), 3479–3489.
  • Hmila, I., et al. 2012. Pre-clinical studies of toxin-specific nanobodies: evidence of in vivo efficacy to prevent fatal disturbances provoked by scorpion envenoming. Toxicology and applied pharmacology, 264 (2), 222–231.
  • Hutt, M.J. and Houghton, P.J., 1998. A survey from the literature of plants used to treat scorpion stings. Journal of ethnopharmacology, 60 (2), 97–110.
  • Isbister, G.K. and Bawaskar, H.S., 2014. Scorpion envenomation. The New England journal of medicine, 371 (5), 457–463.
  • Ismail, M., 1995. The scorpion envenoming syndrome. Toxicon: official journal of the International Society on Toxinology, 33 (7), 825–858.
  • Kabrine, M. and Laraba-Djebari, F., 2014. Immunomodulatory and protective properties of tacrolimus in experimental scorpion envenomation. International journal of immunopathology and pharmacology, 27 (1), 69–78.
  • Kaddache, A., et al. 2017. Switch of steady-state to an accelerated granulopoiesis in response to Androctonus australis hector venom. Inflammation, 40 (3), 871–883.
  • Khattabi, A., et al. 2011. Classification of clinical consequences of scorpion stings: consensus development. Transactions of the Royal Society of Tropical Medicine and Hygiene, 105 (7), 364–369.
  • Khemili, D., Laraba-Djebari, F., and Hammoudi-Triki, D., 2020. Involvement of toll-like receptor 4 in neutrophil-mediated inflammation, oxidative stress and tissue damage induced by scorpion venom. Inflammation, 43 (1), 155–167.
  • Kopeyan, C., et al. 1990. Primary structure of scorpion anti-insect toxins isolated from the venom of Leiurus quinquestriatus quinquestriatus. FEBS letters, 261 (2), 423–426.
  • Krifi, M. et al., 1998. Development of an ELISA for the detection of scorpion venoms in sera of humans envenomed by Androctonus australis garzonii (Aag) and Buthus occitanus. Toxicon: official journal of the International Society on Toxinology. 36 (6), 887–900.
  • Kulkarni, A.G., 2001. Prazosin therapy and scorpion envenomation. The journal of the Association of Physicians of India, 48 (12), 1175–1180.
  • Lamraoui, A., Adi-Bessalem, S., and Laraba-Djebari, F., 2015. Immunopathologic effects of scorpion venom on hepato-renal tissues: involvement of lipid derived inflammatory mediators. Experimental and molecular pathology, 99 (2), 286–296.
  • Laraba-Djebari, F., et al. 1994. The kaliotoxin family enlarged. Purification, characterization, and precursor nucleotide sequence of KTX2 from Androctonus australis venom. Journal of biological chemistry, 269 (52), 32835–32843.
  • Laraba-Djebari, F., Adi-Bessalem, S., and Hammoudi-Triki, D., 2015. Scorpion venoms: pathogenesis and biotherapies. In: Scorpion venoms. Dordrecht, The Netherlands: Springer, 63–85.
  • Laraba-Djebari, F., and Hammoudi-Triki, D., 1999. Purification Et Caracterisation Des Fragments F(Ab’)2 a Partir D’Un Serum Anti-Scorpionique. Archives de l'institut Pasteur d'Algérie, 63, 3–20.
  • Laraba-Djebari, F., and Mohamed, K., 2014. Phytotherapy as new approach to treat scorpion envenomation: experimental study. International journal of pharmaceutical sciences and research, 5 (5), 1682–1692.
  • Lila, B.-A. and Laraba-Djebari, F., 2011. Enhanced immune sera and vaccine: safe approach to treat scorpion envenoming. Vaccine, 29 (48), 8951–8959.
  • Mansour, N.M., et al. 2011. Protective role of Ambrosia maritima plant extract against alterations induced by Leiurus quinquestriatus scorpion venom on skeletal muscles and intestinal tissues of rats. Egyptian journal of natural toxins, 8, 81–103.
  • Martin, M.F., et al. 1987. Use of high performance liquid chromatography to demonstrate quantitative variation in components of venom from the scorpion Androctonus australis hector. Toxicon: official journal of the International Society on Toxinology, 25 (5), 569–573.
  • Martin, M.F. and Rochat, H., 1986. Large scale purification of toxins from the venom of the scorpion Androctonus australis Hector. Toxicon: official journal of the International Society on Toxinology, 24 (11–12), 1131–1139.
  • Martin-Eauclaire, M.-F., et al. 2005. New “birtoxin analogs” from Androctonus australis venom. Biochemical and biophysical research communications, 333 (2), 524–530.
  • Martin-Eauclaire, M.-F., et al. 2019. Serotherapy against voltage-gated sodium channel-targeting αtoxins from Androctonus scorpion venom. Toxins, 11 (2), 63.
  • Medjadba, W., Martin-Eauclaire, M.F., and Laraba-Djebari, F., 2016. Involvement of Kallikrein-Kinin system on cardiopulmonary alterations and inflammatory response induced by purified Aah I toxin from scorpion venom. Inflammation, 39 (1), 290–302. Springer New York LLC,
  • Meki, A. and El-Dean, Z., 1998. Serum interleukin-1β, interleukin-6, nitric oxide and α 1-antitrypsin in scorpion envenomed children. Toxicon: official journal of the International Society on Toxinology, 36 (12), 1851–1859.
  • Miranda, F. and Lissitzky, S., 1961. Scorpamins: the toxic proteins of scorpion venoms. Nature, 190 (4774), 443–444.
  • Morais, V., 2018. Antivenom therapy: efficacy of premedication for the prevention of adverse reactions. Journal of venomous animals and toxins including tropical diseases, 24 (1), 1–7.
  • Morais, V.M. and Massaldi, H., 2009. Snake antivenoms: adverse reactions and production technology. Journal of venomous animals and toxins including tropical diseases, 15 (1), 2–18.
  • Mousli, M., et al. 1999. A recombinant single-chain antibody fragment that neutralizes toxin II from the venom of the scorpion Androctonus australis hector. FEBS letters, 442 (2–3), 183–188.
  • Nait Mohamed, F.A. and Laraba-Djebari, F., 2016. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: safe immunoprotective approach against scorpion envenoming. Vaccine, 34 (24), 2692–2699.
  • Nakib, I., Martin-Eauclaire, M.F., and Laraba-Djebari, F., 2016. Involvement of cholinergic and adrenergic receptors in pathogenesis and inflammatory response induced by alpha-neurotoxin bot III of scorpion venom. Inflammation, 39 (5), 1670–1680.
  • Natu, V.S., 2010. Efficacy of anti-scorpion venom serum over prazosin in the management of severe scorpion envenomation. Journal of postgraduate medicine, 56 (4), 275–280.
  • Nouira, S., et al. 1995. Right ventricular dysfunction following severe scorpion envenomation. Chest, 108 (3), 682–687.
  • Nouira, S., et al. 2005. Neurohormonal activation in severe scorpion envenomation: correlation with hemodynamics and circulating toxin. Toxicology and applied pharmacology, 208 (2), 111–116.
  • Nouri, A. and Laraba-Djebari, F., 2015. Enhancement of long-lasting immunoprotective effect against Androctonus australis hector envenomation using safe antigens: comparative role of MF59 and Alum adjuvants. Vaccine, 33 (43), 5756–5763.
  • Nouri, A., Nait Mohamed, F.A., and Laraba-Djebari, F., 2018. New and safe formulation for scorpion immunotherapy: comparative study between saponin and FCA adjuvants associated to attenuated venom. Vaccine, 36 (13), 1720–1727.
  • Pandi, K., et al. 2014. Efficacy of scorpion antivenom plus prazosin versus prazosin alone for Mesobuthus tamulus scorpion sting envenomation in children: a randomised controlled trial. Archives of disease in childhood, 99 (6), 575–580.
  • Pépin-Covatta, S., et al. 1996. Immunoreactivity and pharmacokinetics of horse anti-scorpion venom F(ab’)2-scorpion venom interactions. Toxicology and applied pharmacology, 141 (1), 272–277.
  • Petricevich, V.L., 2010. Scorpion venom and the inflammatory response. Mediators of inflammation, 2010, 1–16.
  • Petricevich, V.L., et al. 2007. Toxin gamma from Tityus serrulatus scorpion venom plays an essential role in immunomodulation of macrophages. Toxicon: official journal of the International Society on Toxinology, 50 (5), 666–675.
  • Picman, A.K., 1986. Biological activities of sesquiterpene lactones. Biochemical systematics and ecology, 14 (3), 255–281.
  • Pirquet, C.V., 1905. Die Serumkrankheit. Universitäts-Kinder-Klinik in Wien, 1, 1–144.
  • Pla, D., Rodríguez, Y., and Calvete, J.J., 2017. Third generation antivenomics: pushing the limits of the in vitro preclinical assessment of antivenoms. Toxins, 9 (5), 315–316.
  • Possani, L.D., de Castro, J.F., and Juliá, J.Z., 1981. Detoxification with glutaraldehyde of purified scorpion (Centruroides noxius Hoffmann) venom. Toxicon: official journal of the International Society on Toxinology, 19 (2), 323–329.
  • Raouraoua-Boukari, R., et al. 2012. Immunomodulation of the inflammatory response induced by Androctonus australis hector neurotoxins: biomarker interactions. Neuroimmunomodulation, 19 (2), 103–110.
  • Rebahi, H., et al. 2015. Posterior reversible encephalopathy syndrome in a child stung by Androctonus mauretanicus scorpion. Journal of stroke and cerebrovascular diseases: the official journal of National Stroke Association, 24 (6), e129–e132.
  • Rebbouh, F., Martin-Eauclaire, M.F., and Laraba-Djebari, F., 2020. Chitosan nanoparticles as a delivery platform for neurotoxin II from Androctonus australis hector scorpion venom: assessment of toxicity and immunogenicity. Acta Tropica, 205, 105353.
  • Revelo, M.P., et al. 1996. Body distribution of Tityus serrulatus scorpion venom in mice and effects of scorpion antivenom. Toxicon: official journal of the International Society on Toxinology, 34 (10), 1119–1125.
  • Riaño-Umbarila, L., et al. 2005. A strategy for the generation of specific human antibodies by directed evolution and phage display. An example of a single-chain antibody fragment that neutralizes a major component of scorpion venom. The FEBS journal, 272 (10), 2591–2601.
  • Riaño-Umbarila, L., et al. 2019. Generation of a broadly cross-neutralizing antibody fragment against several Mexican scorpion venoms. Toxins, 11 (1), 32.
  • Rodrigo, C. and Gnanathasan, A., 2017. Management of scorpion envenoming: a systematic review and meta-analysis of controlled clinical trials. Systematic reviews, 6 (1), 74.
  • Rodríguez, E.R.R., et al. 2015. Recombinant neutralizing antibodies, a new generation of antivenoms. In: Scorpion Venoms. Dordrecht, The Netherlands: Springer, 139–159.
  • Romey, G., et al. 1975. Scorpion neurotoxin – a presynaptic toxin which affects both Na + and K + channels in axons. Biochemical and biophysical research communications, 64 (1), 115–121.
  • Saidi, H., et al. 2013. Effects of atropine and propranolol on lung inflammation in experimental envenomation: comparison of two Buthidae venoms. Journal of venomous animals and toxins including tropical diseases, 19 (1), 8.
  • Sami-Merah, S., et al. 2008. Combination of two antibody fragments F(ab’)(2)/Fab: an alternative for scorpion envenoming treatment. International immunopharmacology, 8 (10), 1386–1394.
  • Santhanakrishnan, B.R. and Balagopal Raju, V., 1974. Management of scorpion sting in children. The journal of tropical medicine and hygiene, 77 (6), 133–135.
  • Schade, R., et al. 1996. The production of avian (egg yolk) antibodies: IgY. The report and recommendations of ECVAM workshop 21. Alternatives to laboratory animals, 24 (6), 925–934.
  • Schade, R., et al. 2005. Chicken egg yolk antibodies (IgY-technology): a review of progress in production and use in research and human and veterinary medicine. Alternatives to laboratory animals, 33 (2), 129–154.
  • Sedziwy, L., Thomas, M., and Shillingford, J., 1968. Some observations on haematocrit changes in patients with acute myocardial infarction. British heart journal, 30 (3), 344–349.
  • Sergent, E., 1939. Anti-scorpionic serotherapy. Archives de l’Institut Pasteur D’Algerie, 17 (3), 412–420.
  • Sifi, A., Adi-Bessalem, S., and Laraba-Djebari, F., 2018. Development of a new approach of immunotherapy against scorpion envenoming: avian IgYs an alternative to equine IgGs. International immunopharmacology, 61, 256–265.
  • Sifi, N., Martin-Eauclaire, M., and Laraba-Djebari, F., 2016. K + channel blocker-induced neuroinflammatory response and neurological disorders: immunomodulatory effects of astaxanthin. Inflammation research: official journal of the European Histamine Research Society, 65 (8), 623–634.
  • Smith, D.M., Simon, J.K., and Baker, J.R., Jr., 2013. Applications of nanotechnology for immunology. Nature reviews immunology, 13, 592–605.
  • Soualmia, H., Eurin, J., and Djeridane, Y., 2009. Scorpion toxin of Androctonus australis garzonii induces neuropeptide Y release via bradykinin stimulation in rat atria and kidneys. Peptides, 30 (8), 1553–1556.
  • Soulaymani Bencheikh, R., et al. 2007. Scorpion stings in one province of Morocco: epidemiological, clinical and prognosis aspects. Journal of venomous animals and toxins including tropical diseases, 13 (2), 462–471.
  • Srairi-Abid, N., et al. 2008. Immunological characterization of a non-toxic peptide conferring protection against the toxic fraction (AahG50) of the Androctonus australis hector venom. Toxicon: official journal of the International Society on Toxinology, 51 (3), 353–362.
  • Taibi-Djennah, Z. and Laraba-Djebari, F., 2015. Effect of cytokine antibodies in the immunomodulation of inflammatory response and metabolic disorders induced by scorpion venom. International immunopharmacology, 27 (1), 122–129.
  • Thalley, B.S. and Carroll, S.B., 1990. Rattlesnake and scorpion antivenoms from the egg yolks of immunized hens. Biotechnology, 8 (10), 934–938.
  • Todd, C., 1909. An anti-serum for scorpion venom. The journal of hygiene, 9 (1), 69–85.
  • Trinh, K.X. and Trinh, L.X., 2005. The production of bungarus Candidus antivenom from horses immunized with venom & it’s application for the treatment of snake bite patients in Vietnam. Therapeutic drug monitoring, 27 (2), 230.
  • Uawonggul, N., et al. 2006. Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis. Journal of ethnopharmacology, 103 (2), 201–207.
  • Verma, R., Boleti, E., and George, A., 1998. Antibody engineering: Comparison of bacterial, yeast, insect and mammalian expression systems. Journal of immunological methods, 216 (1–2), 165–181.
  • Yang, Y., et al. 2014. Androcin, a novel type of cysteine-rich venom peptide from Androctonus bicolor, induces akinesia and anxiety-like symptoms in mice. IUBMB life, 66 (4), 277–285.
  • Zerrouk, H., et al. 1991. Analysis by high-performance liquid chromatography of Androctonus mauretanicus mauretanicus (black scorpion) venom. Toxicon: official journal of the International Society on Toxinology, 29 (8), 951–960.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.