122
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Lemongrass essential oil and its components cause effects on survival, locomotion, ingestion, and histological changes of the midgut in Anticarsia gemmatalis caterpillars

, , , , , , ORCID Icon & ORCID Icon show all
Pages 208-217 | Received 02 Oct 2020, Accepted 05 Dec 2020, Published online: 29 Jan 2021

References

  • Amaral, K.D., et al., 2018. Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens. Environmental pollution (Barking, Essex: 1987), 243 (Pt B), 809–814.
  • Arthidoro de Castro, M.B., et al., 2020. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. Chemosphere, 248, 126075.
  • Benelli, G., et al., 2018a. Not just popular spices! Essential oils from Cuminum cyminum and Pimpinella anisum are toxic to insect pests and vectors without affecting non-target invertebrates. Industrial crops and products, 124, 236–243.
  • Benelli, G., et al., 2018b. High toxicity of camphene and γ-element from Wedelia prostrata essential oil against larvae of Spodoptera litura (Lepidoptera: Noctuidae). Environmental science and pollution research international, 25 (11), 10383–10391.
  • Bloomquist, J.R., 2003. Chloride channels as tools for developing selective insecticides. Archives of insect biochemistry and physiology, 54 (4), 145–156.
  • Bloomquist, J.R., et al., 2008. Mode of action of the plant-derived silphinenes on insect and mammalian GABAA receptor/chloride channel complex. Pesticide biochemistry and physiology, 91 (1), 17–23.
  • Brügger, B.P., et al., 2019. Bioactivity of the Cymbopogon citratus (Poaceae) essential oil and its terpenoid constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Scientific reports, 9 (1), 8358.
  • Carneiro, L., et al., 2020. The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers. Ecotoxicology and environmental safety, 189, 109991.
  • Casida, J.E. and Tomizawa, M., 2008. Insecticide interactions with g-aminobutyric acid and nicotinic receptors: predictive aspects of structural models. Journal of pesticide science, 33 (1), 4–8.
  • Castro, B.M.C., et al., 2019b. Chlorantraniliprole degenerates microvilli goblet cells of the Anticarsia gemmatalis (Lepidoptera: Noctuidae) midgut. Chemosphere, 229, 525–528.
  • Castro, B.M.C., et al., 2021. Exposure to chlorantraniliprole reduces locomotion, respiration, and causes histological changes in the midgut of velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere, 263, 128008.
  • Cossolin, J.F.S., et al., 2019. Cytotoxicity of Piper aduncum (Piperaceae) essential oil in brown stink bug Euschistus heros (Heteroptera: Pentatomidae). Ecotoxicology (London, England), 28 (7), 763–770.
  • Darabi, K. and Khajehali, J., 2017. Bioactivity of essential oils of Mentha species and Cuminum cyminum L. on Anarta trifolii (Hufnagel) (Lepidoptera: Noctuidae). Journal of essential oil bearing plants, 20 (4), 1097–1106.
  • Diabate, S., et al., 2019. Repellent activity of Cymbopogon citratus and Tagetes minuta and their specific volatiles against Megalurothrips sjostedti. Journal of applied entomology, 143 (8), 855–866.
  • Dow, J.A., 1987. Insect midgut function. Advances in insect physiology, 19, 187–328.
  • Enan, E.E., 2001. Insecticidal activity of essential oils: octopaminergic sites of action. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 130 (3), 325–337.
  • Enan, E.E., 2005. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Archives of insect biochemistry and physiology, 59 (3), 161–171.
  • Erlandson, M.A., Toprak, U., and Hegedus, D.D., 2019. Role of the peritrophic matrix in insect-pathogen interactions. Journal of insect physiology, 117, 103894.
  • Fiaz, M., et al., 2018a. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and environmental safety, 156, 1–8.
  • Fiaz, M., et al., 2018b. Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: noctuidae) larvae. Chemosphere, 212, 337–345.
  • Fiaz, M., et al., 2019. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. PeerJ, 7, e7489.
  • Haouas, D., et al., 2010. Feeding perturbation and toxic activity of five Chrysanthemum species crude extracts against Spodoptera littoralis (Boisduval) (Lepidoptera; Noctuidae). Crop protection, 29 (9), 992–997.
  • Hoffmann-Campo, C.B., de Oliveira, E.B., and Moscardi, F., 1985. Criação massal da lagarta da soja (Anticarsia gemmatalis). Embrapa Soja‐Documentos (INFOTECA‐E), 1st ed.(23). Londrina: Embrapa – CNPSO. ISSN 0101–5494.
  • Homrich, M.S., et al., 2008. Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae) in transgenic soybean (Glycine max (L.) Merrill Fabales, Fabaceae) cultivar IAS5 expressing a modified Cry1Ac endotoxin. Genetics and molecular biology, 31 (2), 522–531.
  • IRAC (Insecticide Resistance Action Committee), 2009. IRAC Susceptibility Test Methods 020. https://irac-online.org/content/uploads/2009/09/Method_020_v3.2.pdf.
  • Isman, M.B., Miresmailli, S., and Machial, C., 2011. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry reviews, 10 (2), 197–204.
  • Janeh, M., Osman, D., and Kambris, Z., 2019. Comparative analysis of midgut regeneration capacity and resistance to oral infection in three disease-vector mosquitoes. Scientific reports, 9 (1), 14556.
  • Jovanović, J., et al., 2020. Effect of encapsulated lemongrass (Cymbopogon citratus L.) essential oil against potato tuber moth Phthorimaea operculella. Crop protection, 132, 105109.
  • Keane, S. and Ryan, M.F., 1999. Purification, characterisation and inhibition of monoterpenes of acetylcholonesterase from the waxmoth, Galleria melonella. Insect biochemistry and molecular biology, 29 (12), 1097–1104.
  • Kim, S.I., et al., 2011. Contact and fumigant toxicity of plant essential oils and efficacy of spray formulations containing the oils against B- and Q-biotypes of Bemisia tabaci . Pest management science, 67 (9), 1093–1099.
  • Koch, A. and Moffett, D.F., 1995. Electrophysiology of K + transport by midgut epithelium of lepidopteran insect larvae. IV. A multicompartment model accounts for tetramethylammonium entry into goblet cavities. The journal of experimental biology, 198, 2115–2125.
  • Kostyukovsky, M., et al., 2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants: possible mode of action against insect pests. Pest management science, 58 (11), 1101–1106.
  • Levy, S.M., et al., 2004. The larval midgut of Anticarsia gemmatalis (Hübner) (Lepidoptera: Noctuidae): light and electron microscopy studies of the epithelial cells. Brazilian journal of biology = Revista Brasleira de Biologia, 64 (3B), 633–638.
  • Levy, S.M., et al., 2007. Susceptibility/resistance of Anticarsia gemmatalis larvae to its nucleopolyhedrovirus (AgMNPV): structural study of the peritrophic membrane. Journal of invertebrate pathology, 96 (2), 183–186.
  • Loko, Y.L.E., et al., 2020. Bioactivity of essential oils of Cymbopogon citratus (DC) Stapf and Cymbopogon nardus (L.) W. Watson from Benin against Dinoderus porcellus Lesne (Coleoptera: Bostrichidae) infesting yam chips. International journal of tropical insect science. doi: https://doi.org/10.1007/s42690-020-00235-3
  • Lü, M., Wu, W., and Liu, H., 2013. Insecticidal and feeding deterrent effects of fraxinellone from Dictamnus dasycarpus against four major pests. Molecules (Basel, Switzerland), 18 (3), 2754–2762.
  • Martínez, L.C., et al., 2015. Bioactivity of six plant extracts on adults of Demotispa neivai (Coleoptera: Chrysomelidae). Journal of insect science, 15 (34), 1–5.
  • Martínez, L.C., et al., 2018a. Toxic effects of two essential oils and their constituents on the mealworm beetle, Tenebrio molitor. Bulletin of entomological research, 108 (6), 716–725.
  • Martínez, L.C., et al., 2018b. Permethrin induces histological and cytological changes in the midgut of the predatory bug, Podisus nigrispinus. Chemosphere, 212, 629–637.
  • Martínez, L.C., et al., 2019. Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. Ecotoxicology and environmental safety, 167, 69–75.
  • Mills, C., et al., 2004. Inhibition of acetylcholinesterase by tea tree oil. The journal of pharmacy and pharmacology, 56 (3), 375–379.
  • Mukherjee, P.K., et al., 2007. Acetylcholinesterase inhibitors from plants. Phytomedicine : international journal of phytotherapy and phytopharmacology, 14 (4), 289–300.
  • Olivero-Verbel, J., Nerio, L.S., and Stashenko, E.E., 2010. Bioactivity against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) of Cymbopogon citratus and Eucalyptus citriodora essential oils grown in Colombia. Pest management science, 66 (6), 664–668.
  • Pavela, R. and Benelli, G., 2016. Essential oils as ecofriendly biopesticides? Challenges and constraints. Trends in plant science, 21 (12), 1000–1007.
  • Plata-Rueda, A., et al., 2017. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Scientific reports, 7, 46406.
  • Plata-Rueda, A., et al., 2018. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotoxicology and environmental safety, 156, 263–270.
  • Plata-Rueda, A., et al., 2019. Chlorantraniliprole-mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicology and environmental safety, 172, 53–58.
  • Plata-Rueda, A., et al., 2020a. Acute toxicity and sublethal effects of lemongrass essential oil and their components against the granary weevil, Sitophilus granarius. Insects, 11 (6), 379.
  • Plata-Rueda, A., et al., 2020b. Insecticidal and repellent activities of Cymbopogon citratus (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against Ulomoides dermestoides. Crop protection, 137, 105299.
  • Plata-Rueda, A., et al., 2020c. Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere, 259, 127530.
  • Priestley, C.M., et al., 2003. Thymol, a constituent of thyme essential oil, is a positive allosteric modulator of human GABA(A) receptors and a homo-oligomeric GABA receptor from Drosophila melanogaster. British journal of pharmacology, 140 (8), 1363–1372.
  • Rattan, R.S., 2010. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop protection, 29 (9), 913–920.
  • Regnault-Roger, C., Vincent, C., and Arnason, J.T., 2012. Essential oils in insect control: low-risk products in a high-stakes world. Annual review of entomology, 57, 405–424.
  • Rharrabe, K., et al., 2007. Diversity of detoxification pathways of ingested ecdysteroids among phytophagous insects. Archives of insect biochemistry and physiology, 65 (2), 65–73.
  • Rose, R.L., Sparks, T.C., and Smith, C.M., 1988. Insecticide toxicity to the soybean looper and the velvetbean caterpillar (Lepidoptera: Noctuidae) as influenced by feeding on resistant soybean (PI 227687) leaves and coumesterol. Journal of economic entomology, 81 (5), 1288–1294.
  • Sangwan, N.S., et al., 2001. Regulation of essential oil production in plants. Plant growth regulation, 34 (1), 3–21.
  • Sanini, C., et al., 2017. Essential oil of spiked pepper, Piper aduncum L. (Piperaceae), for the control of caterpillar soybean looper. Brazilian journal of botany, 40 (2), 399–404.
  • Santos-Junior, V.C., et al., 2020. Histopathological and cytotoxic changes induced by spinosad on midgut cells of the non-target predator Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). Chemosphere, 238, 124585.
  • Shao, X., et al., 2016. Induction of autophagy and apoptosis via PI3K/AKT/TOR pathways by azadirachtin a in Spodoptera litura cells. Scientific reports, 6, 35482.
  • Sousa, R.M.O., et al., 2015. Activities of Apiaceae essential oils and volatile compounds on hatchability, development, reproduction and nutrition of Pseudaletia unipuncta (Lepidoptera: Noctuidae). Industrial crops and products, 63, 226–237.
  • Stefanini, M., De Martino, C., and Zamboni, L., 1967. Fixation of ejaculated spermatozoa for electron microscopy. Nature, 216 (5111), 173–174.
  • Whalon, M.E., Mota-Sanchez, D., and Hollingworth, R.M., 2008. Global pesticide resistane in arthropods. Oxford: Oxfor University Press. 169 p.
  • Yazdani, E., et al., 2013. Effect of Satureja hortensis L. essential oil on feeding efficiency and biochemical properties of Glyphodes pyloalis Walker (Lepidoptera: Pyralidae). Archives of phytopathology and plant protection, 46 (3), 328–339.
  • Zhu, Q., et al., 2020. Synthesis, insecticidal activity, resistance, photodegradation and toxicity of pyrethroids (A review). Chemosphere, 254, 126779.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.