121
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Insecticide potential of two saliva components of the predatory bug Podisus nigrispinus (Heteroptera: Pentatomidae) against Spodoptera frugiperda (Lepidoptera: Noctuidae) caterpillars

, ORCID Icon, , , & ORCID Icon
Pages 268-279 | Received 20 Jul 2020, Accepted 20 Dec 2020, Published online: 05 Jan 2021

References

  • Afzal, M.B.S., et al., 2020. Laboratory selection, cross-resistance, and estimations of realized heritability of indoxacarb resistance in Phenacoccus solenopsis (Homoptera: Pseudococcidae). Pest management science, 76 (1), 161–168.
  • Arrese, E.L. and Soulages, J.L., 2010. Insect fat body: energy, metabolism, and regulation. Annual review of entomology, 55, 207–225.
  • Baek, J.H., et al., 2011. Venom peptides from solitary hunting wasps induce feeding disorder in lepidopteran larvae. Peptides, 32 (3), 568–572.
  • Bell, H.A., et al., 2005. Digestive proteolytic activity in the gut and salivary glands of the predatory bug Podisus maculiventris (Heteroptera: Pentatomidae), effect of proteinase inhibitors. European journal of entomology, 102 (2), 139–145.
  • Cao, F., Kim, J., and Bard, A.J., 2014. Detection of the short-lived cation radical intermediate in the electrochemical oxidation of N,N-dimethylaniline by scanning electrochemical microscopy. Journal of the American chemical society, 136 (52), 18163–18169.
  • Castro, B.M.C., et al., 2019. Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Scientific reports, 9 (1), 6667.
  • Cohen, A.C., 1998. Solid-to-liquid feeding: the inside story of extra-oral digestion in predaceous Heteroptera. Annals of entomological society of American entomologist, 44 (2), 103–117.
  • Cossolin, J.F.S., et al., 2019. Cytotoxicity of Piper aduncum (Piperaceae) essential oil in brown stink bug Euschistus heros (Heteroptera: Pentatomidae). Ecotoxicology (London, England), 28 (7), 763–770.
  • De Sousa, M.E.C., et al., 2009. Ultrastructure of the Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) midgut. Micron (Oxford, England: 1993), 40 (7), 743–749.
  • Denecke, S., et al., 2018. How do oral insecticidal compounds cross the insect midgut epithelium? Insect biochemistry and molecular biology, 103, 22–35.
  • Dow, J.A., 1987. Insect midgut function. Advances of insect physiology, 19, 187–328.
  • Dossey, A.T., et al., 2009. Alkyldimethylpyrazines in the defensive spray of Phyllium westwoodii: a first for order Phasmatodea. Journal of chemical ecology, 35 (8), 861–870.
  • Dumbacher, J.P., et al., 2004. Melyrid beetles (Choresine): a putative source for the batrachotoxin alkaloids found in poison-dart frogs and toxic passerine birds. Proceedings of the national academy of sciences of the United States of America, 101 (45), 15857–15860.
  • Fialho, M.C.Q., et al., 2012. Prey digestion in the midgut of the predatory bug Podisus nigrispinus (Hemiptera: Pentatomidae). Journal of insect physiology, 58 (6), 850–856.
  • Fiaz, M., et al., 2018. Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: Noctuidae) larvae. Chemosphere, 212, 337–345.
  • Field, L. and Foster, C.H., 1970. Biologically oriented organic sulfur chemistry. IV. Synthesis and properties of 1,2,5-trithiepane, a model for study of sulfide and disulfide moieties in proximity. The journal of organic chemistry, 35 (3), 749–752.
  • Finney, D.J., 1964. Probit analysis. Cambridge, UK: Cambridge University Press, 333.
  • Greene, G.L., Leppla, N.C., and Dickerson, W.A., 1976. Velvetbean caterpillar: a rearing procedure and artificial medium. Journal of economic entomology, 69 (4), 487–488.
  • Guedes, R.N.C., et al., 2006. Cost and mitigation of insecticide resistance in the maize weevil, Sitophilus zeamais. Physiological entomology, 31 (1), 30–38.
  • Gui, Z.Z., et al., 2009. Effects of insect viruses and pesticides on glutathione S-transferase activity and gene expression in Bombyx mori. Journal of economic entomology, 102 (4), 1591–1598.
  • Guo, W., Kain, W., and Wang, P., 2019. Effects of disruption of the peritrophic membrane on larval susceptibility to Bt toxin Cry1Ac in cabbage loopers. Journal of insect physiology, 117, 103897.
  • Hu, J., et al., 2016. Mechanisms of TiO2 NPs-induced phoxim metabolism in silkworm (Bombyx mori) fat body. Pesticide biochemistry and physiology, 129, 89–94.
  • Konno, K., et al., 2018. Abnormal swelling of the peritrophic membrane in Eri silkworm gut caused by MLX56 family defense proteins with chitin-binding and extensin domains. Phytochemistry, 147, 211–219.
  • Lu, J. and Holmgren, A., 2012. Thioredoxin system in cell death progression. Antioxidants & redox signaling, 17 (12), 1738–1747.
  • Lusebrink, I., et al., 2009. New pyridine alkaloids from rove beetles of the genus Stenus (Coleoptera: Staphylinidae). Zeitschrift fur naturforschung. C, journal of biosciences, 64 (3–4), 271–278.
  • Martinelli, S., et al., 2007. Genetic structure and molecular variability of Spodoptera frugiperda (Lepidoptera: Noctuidae) collected in maize and cotton fields in Brazil. Bulletin of entomological research, 97 (3), 225–231.
  • Martínez, L.C., et al., 2014. Ultrastructure and cytochemistry of salivary glands of the predator Podisus nigrispinus (Hemiptera: Pentatomidae). Protoplasma, 251 (3), 535–543.
  • Martínez, L.C., et al., 2015. Ultrastructure of the salivary glands of the stink bug predator Podisus distinctus. Microscopy and microanalysis, 21 (6), 1514–1522.
  • Martínez, L.C., et al., 2016. Stink bug predator kills prey with salivary non-proteinaceous compounds. Insect biochemistry and molecular biology, 68, 71–78.
  • Martínez, L.C., et al., 2018a. Morphology, ultrastructure, and chemical compounds of the osmeterium of Heraclides thoas (Lepidoptera: Papilionidae). Protoplasma, 255 (6), 1693–1702.
  • Martínez, L.C., et al., 2018b. Permethrin induces histological and cytological changes in the midgut of the predatory bug, Podisus nigrispinus. Chemosphere, 212, 629–637.
  • Martínez, L.C., et al., 2019. Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. Ecotoxicology and environmental safety, 167, 69–75.
  • Montezano, D.G., et al., 2018. Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidade) in the Americas. African entomology, 26 (2), 286–300.
  • Nath, B.S., 2002. Shifts in glycogen metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Pesticide biochemistry and physiology, 74, 73–84.
  • Nauen, R., et al., 2019. IRAC: insecticide resistance and mode-of-action classification of insecticides. In: P. Jeschke, et al., eds. Modern crop protection compounds. Vol. 3. Weinheim: Wiley-VCH, 995–1012.
  • Oliveira, A.H., et al., 2019. A peritrophin mediates the peritrophic matrix permeability in the workers of the bees Melipona quadrifasciata and Apis mellifera. Arthropod structure & development, 53, 100885.
  • Papavizas, G.C., O’Neill, N.R., and Lewis, J.A., 1978. Fungistatic activity of propyl-N-(c-dimethylaminopropyl) carbamate on Pythium spp. and its reversal sterols. Phytopathology, 68 (11), 1667–1671.
  • Parkinson, N., et al., 2002. Purification of pimplin, a paralytic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca, and cloning of the cDNA encoding one of the subunits. Insect biochemistry and molecular biology, 32 (12), 1769–1773.
  • Pourya, M., et al., 2020. Induced resistance in wheat Triticum aestivum L. by chemical- and bio-fertilizers against English aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in greenhouse. International journal of tropical insect science, 40 (4), 1043–1052.
  • Reynolds, E.S., 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The journal of cell biology, 17, 208–2012.
  • Roel, A.R., et al., 2010. The effect of sub-lethal doses of Azadirachta indica (Meliaceae) oil on the midgut of Spodoptera frugiperda (Lepidoptera: Noctuidae). Revista Brasileira de entomologia, 54 (3), 505–510.
  • Sahayaraj, K. and Muthukumar, S., 2011. Zootoxic effects of reduviid Rhynocoris marginatus (Fab.) (Hemiptera: Reduviidae) venomous saliva on Spodoptera litura (Fab.). Toxicon, 58 (5), 415–425.
  • Santos, P.P., et al., 2017. Proteomic analysis of the venom of the predatory ant Pachycondyla striata (Hymenoptera: Formicidae). Archives of insect biochemistry and physiology, 96 (3), e21424.
  • Santos, P.P., et al., 2020. Antibacterial activity of the venom of the ponerine ant Pachycondyla striata (Formicidae: Ponerinae). International journal of tropical insect science, 40 (2), 393–402.
  • Santos-Junior, V.C., et al., 2019. Exposure to spinosad induces histopathological and cytotoxic effects on the salivary complex of the non-target predator Podisus nigrispinus. Chemosphere, 225, 688–695.
  • Schmidt, J.O., 1982. Biochemistry of insect venoms. Annual review of entomology, 27, 339–368.
  • Schmuck, G. and Mihail, F., 2004. Effects of the carbamates fenoxycarb, propamocarb and propoxur on energy supply, glucose utilization and SH-groups in neurons. Archives of toxicology, 78 (6), 330–337.
  • Silva-Cardoso, L., et al., 2010. Paralytic activity of lysophosphatidylcholine from saliva of the waterbug Belostoma anurum. The journal of experimental biology, 213 (Pt 19), 3305–3310.
  • Stefanini, M., De Martino, C., and Zamboni, L., 1967. Fixation of ejaculated spermatozoa for electron microscopy. Nature, 216 (5111), 173–174.
  • Terra, W.R. and Ferreira, C., 1981. The physiological role of the peritrophic membrane and trehalase: digestive enzymes in the midgut and excreta of starved larvae of Rhynchosciara. Journal of insect physiology, 27 (5), 325–331.
  • Terra, W.R. and Ferreira, C., 2020. Evolutionary trends of digestion and absorption in the major insect orders. Arthropod structure & development, 56, 100931.
  • Teixeira, A.A., et al., 2019. Ultramorphology of the peritrophic matrix in bees (Hymenoptera: Apidae). Journal of apicultural research, 58 (3), 463–468.
  • Tian, J.H., et al., 2017. Exogenous substances regulate silkworm fat body protein synthesis through MAPK and PI3K/Akt signaling pathways. Chemosphere, 171, 202–207.
  • Tyler, J., et al., 2008. A defensive steroidal pyrone in the glow-worm Lampyris noctiluca L. (Coleoptera: Lampyridae). Physiological entomology, 33 (2), 167–170.
  • Upadhyay, R.K. and Ahmad, S., 2010. Allergic and toxic responses of insect venom and it’s immunotherapy. Journal of pharmacy research, 3, 3123–3128.
  • Walker, A.A., et al., 2016. Venoms of heteropteran insects: a treasure trove of diverse pharmacological toolkits. Toxins, 8 (2), 43.
  • Yang, M., et al., 2017. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells. Chemosphere, 169, 155–161.
  • Zanuncio, J.C., et al., 2008. Predation rate of Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae with and without defense by Podisus nigrispinus (Heteroptera: Pentatomidae). Brazilian archives of biology and technology, 51 (1), 121–125.
  • Zeiss, C.J., 2003. The apoptosis-necrosis continuum: insights from genetically altered mice. Veterinary pathology, 40 (5), 481–495.
  • Zhang, Z., et al., 2005. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon, 46 (3), 337–349.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.