162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Metalloproteinases and NAD(P)H-dependent oxidoreductase within of Bay nettle (Chrysaora chesapeakei) venom

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 280-289 | Received 26 Oct 2020, Accepted 28 Dec 2020, Published online: 22 Jan 2021

References

  • Bayha, K.M., Collins, A.G., and Gaffney, P.M., 2017. Multigene phylogeny of the scyphozoan jellyfish family Pelagiidae reveals that the common U.S. Atlantic sea nettle comprises two distinct species (Chrysaora quinquecirrha and C. chesapeakei). PeerJ, 5, e3863.
  • Becerra-Amezcua, M.P., et al., 2016. In vivo analysis of effects of venom from the jellyfish Chrysaora sp. in zebrafish (Danio rerio). Toxicon, 113, 49–54.
  • Bloom, D.A., Radwan, F.F., and Burnett, J.W., 2001. Toxinological and immunological studies of capillary electrophoresis fractionated Chrysaora quinquecirrha (Desor) fishing tentacle and Chironex fleckeri Southcott nematocyst venoms. Comparative biochemistry and physiology. Toxicology & pharmacology, 128 (1), 75–90.
  • Brekhman, V., et al., 2015. Transcriptome profiling of the dynamic life cycle of the scypohozoan jellyfish Aurelia aurita. BMC genomics, 16, 74.
  • Brinkman, D. and Burnell, J., 2008. Partial purification of cytolytic venom proteins from the box jellyfish, Chironex fleckeri. Toxicon, 51 (5), 853–863.
  • Brinkman, D.L., et al., 2012. Venom proteome of the box jellyfish Chironex fleckeri. PLoS one, 7 (12), e47866.
  • Brinkman, D.L., et al., 2015. Transcriptome and venom proteome of the box jellyfish Chironex fleckeri. BMC genomics, 16, 407.
  • Brinkman, D.L., et al., 2014. Chironex fleckeri (box jellyfish) venom proteins: expansion of a cnidarian toxin family that elicits variable cytolytic and cardiovascular effects. Journal of biological chemistry, 289 (8), 4798–4812.
  • Calton, G.J. and Burnett, J.W., 1982. Partial purification and characterization of the acid protease of sea nettle (Chrysaora quinquecirrha) Nematocyst venom. Comparative biochemistry and physiology part B: comparative biochemistry, 72 (1), 93–97.
  • Calton, G.J. and Burnett, J.W., 1983. Partial purification and characterization of the alkaline protease of sea nettle (Chrysaora quinquecirrha) nematocyst venom. Comparative biochemistry and physiology part C: comparative pharmacology, 74 (2), 361–364.
  • Cobbs, C.S., et al., 1983. Sea nettle Chrysaora quinquecirrha nematocyst venom hemagglutinins. Comparative biochemistry and physiology part C: comparative pharmacology, 74 (1), 225–228.
  • Costa, T.R., et al., 2014. Snake venom L-amino acid oxidases: an overview on their antitumor effects. The journal of venomous animals and toxins including tropical diseases, 20, 23.
  • Da Silveira, R.b., et al., 2007. Identification, cloning, expression and functional characterization of an astacin-like metalloprotease toxin from Loxosceles intermedia (brown spider) venom. The biochemical journal, 406 (2), 355–363.
  • Dart, R.C., 2004. Medical toxicology. Philadelphia, UK: Lippincott, Williams & Wilkins.
  • Fox, J.W. and Serrano, S.M.T., 2005. Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon, 45 (8), 969–985.
  • Frazão, B., et al., 2017. Analysis of Pelagia noctiluca proteome reveals a red fluorescent protein, a zinc metalloproteinase and a peroxiredoxin. The protein journal, 36 (2), 77–97.
  • Gutiérrez, J.M. and Rucavado, A., 2000. Snake venom metalloproteinases: their role in the pathogenesis of local tissue damage. Biochimie, 82 (9–10), 841–850.
  • Guzmán-García, X., Ramírez-Romero, P., and López-Vite, S., 2009. Manual de procedimientos estándares para el análisis histológico e histopatológico en organismos acuáticos. Instituto Nacional de Ecología y Cambio Climático. México. 22.
  • Jaimes-Becerra, A., et al., 2017. Comparative proteomics reveals recruitment patterns of some protein families in the venoms of Cnidaria. Toxicon, 137, 19–26.
  • Jouiaei, M., et al., 2015. Ancient venom systems: a review on Cnidaria toxins. Toxins, 7 (6), 2251–2271.
  • Kang, C., et al., 2014. Characterization and neutralization of Nemopilema nomurai (Scyphozoa: Rhizostomeae) jellyfish venom using polyclonal antibody. Toxicon, 86, 116–125.
  • Knittel, P.S., et al., 2016. Characterising the enzymatic profile of crude tentacle extracts from the South Atlantic jellyfish Olindias sambaquiensis (Cnidaria: Hydrozoa). Toxicon, 119, 1–7.
  • Lal, D.M., et al., 1981. Characterization of Chrysaora quinquecirrha (sea nettle) nematocyst venom collagenase. Comparative biochemistry and physiology part B: comparative biochemistry, 69 (3), 529–533.
  • Lee, H., et al., 2011. Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity. Toxicon, 58 (3), 277–284.
  • Li, R., et al., 2012. Application of nanoLC-MS/MS to the shotgun proteomic analysis of the nematocyst proteins from jellyfish Stomolophus meleagris. Journal of chromatography. B, analytical technologies in the biomedical and life sciences, 899, 86–95.
  • Li, R., et al., 2014a. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. Journal of proteomics, 106, 17–29.
  • Li, R., et al., 2014b. Jellyfish venomics and venom gland transcriptomics analysis of Stomolophus meleagris to reveal the toxins associated with sting. Journal of proteomics, 106, 17–29.
  • Li, R., et al., 2016. Combined proteomics and transcriptomics identifies sting-related toxins of jellyfish Cyanea nozakii. Journal of proteomics, 148, 57–64.
  • Liang, H., et al., 2019. An integrated transcriptomic and proteomic analysis reveals toxin arsenal of a novel Antarctic jellyfish Cyanea sp. Journal of proteomics, 208, 103483.
  • Lira Galera, I.E., Müdespacher Ziehl, C., and Cifuentes Lemus, J.L., 1989. Guía ilustrada de animales marinos venenosos de México y el Caribe México City, México: Limusa S.A. de C.V.
  • Liu, G., et al., 2015. Global transcriptome analysis of the tentacle of the jellyfish Cyanea capillata using deep sequencing and expressed sequence tags: insight into the toxin- and degenerative disease-related transcripts. PLoS one, 10 (11), e0142680.
  • Long, K.O. and Burnett, J.W., 1989. Isolation, characterization, and comparison of hemolytic peptides in nematocyst venoms of two species of jellyfish (Chrysaora quinquecirrha and Cyanea capillata). Comparative biochemistry and physiology part B: comparative biochemistry, 94 (4), 641–646.
  • Lowry, O.H., et al., 1951. Protein measurement with the Folin phenol reagent. The journal of biological chemistry, 193 (1), 265–275.
  • Ma, B. and Johnson, R., 2012. De novo sequencing and homology searching. Molecular & cellular proteomics, 11 (2).doi: https://doi.org/10.1074/mcp.O111.014902
  • Ma, B., et al., 2003. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid communications in mass spectrometry, 17 (20), 2337–2342.
  • Macrander, J., Broe, M., and Daly, M., 2016. Tissue-specific venom composition and differential gene expression in sea anemones. Genome biology and evolution, 8 (8), 2358–2375.
  • Mayer, A.G., 1910. The medusae of the world. The scyphomedusae. Washington, DC: The Carnegie Institution.
  • Pan, T.L., et al., 1998. A toxin homology domain in an astacin-like metalloproteinase of the jellyfish Podocoryne carnea with a dual role in digestion and development. Development genes and evolution, 208 (5), 259–266.
  • Papayannopoulos, I.A., 1995. The interpretation of collision-induced dissociation tandem mass spectra of peptides. Mass spectrometry reviews, 14 (1), 49–73.
  • Ponce, D., et al., 2016. Tentacle transcriptome and venom proteome of the Pacific Sea Nettle, Chrysaora fuscescens (Cnidaria: Scyphozoa). Toxins, 8 (4), 102.
  • Ponce, D., et al., 2015. Comparative study of the toxic effects of Chrysaora quinquecirrha (Cnidaria: Scyphozoa) and Chironex fleckeri (Cnidaria: Cubozoa) venoms using cell-based assays. Toxicon, 106, 57–67.
  • Purcell, J.E. and Cowan, J.H., 1995. Predation by the scyphomedusan Chrysaora quinquecirrha on Mnemiopsis leidyi ctenophores. Marine ecology progress series, 129, 63–70.
  • Rastogi, A., Sarkar, A., and Chakrabarty, D., 2017. Partial purification and identification of a metalloproteinase with anticoagulant activity from Rhizostoma pulmo (Barrel Jellyfish). Toxicon, 132, 29–39.
  • Shevchenko, A., et al., 2006. In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature protocols, 1 (6), 2856–2860.
  • Strohalm, M., et al., 2010. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Analytical chemistry, 82 (11), 4648–4651.
  • Sunyaev, S., et al., 2003. MultiTag: multiple error-tolerant sequence tag search for the sequence-similarity identification of proteins by mass spectrometry. Analytical chemistry, 75 (6), 1307–1315.
  • Takeda, S., Takeya, H., and Iwanaga, S., 2012. Snake venom metalloproteinases: structure, function and relevance to the mammalian ADAM/ADAMTS family proteins. Biochimica et biophysica acta, 1824 (1), 164–176.
  • Trevisan-Silva, D., et al., 2010. Astacin-like metalloproteases are a gene family of toxins present in the venom of different species of the brown spider (genus Loxosceles). Biochimie, 92 (1), 21–32.
  • Ullah, A., 2020. Structure-function studies and mechanism of action of snake venom L-amino acid oxidases. Frontiers in pharmacology, 11, 110.
  • Wang, B., et al., 2013. Multiple organ dysfunction: a delayed envenomation syndrome caused by tentacle extract from the jellyfish Cyanea capillata. Toxicon, 61, 54–61.
  • Weston, A.J., et al., 2013. Proteomic characterisation of toxins isolated from nematocysts of the South Atlantic jellyfish Olindias sambaquiensis. Toxicon, 71, 11–17.
  • Wolfsberg, T.G., et al., 1995. ADAM, a novel family of membrane proteins containing a disintegrin and metalloprotease domain: multipotential functions in cell-cell and cell-matrix interactions. The journal of cell biology, 131 (2), 275–278.
  • Yu, C., Yu, H., and Li, P., 2020. Highlights of animal venom research on the geographical variations of toxin components, toxicities and envenomation therapy. International journal of biological macromolecules, 165 (B), 2994–3006.
  • Yue, Y., et al., 2017a. Biochemical and kinetic evaluation of the enzymatic toxins from two stinging scyphozoans Nemopilema nomurai and Cyanea nozakii. Toxicon, 125, 1–12.
  • Yue, Y., et al., 2017b. Functional elucidation of Nemopilema nomurai and Cyanea nozakii nematocyst venoms’ lytic activity using mass spectrometry and zymography. Toxins, 9 (2), 47.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.