196
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Presence of a neprilysin on Avicularia juruensis (Mygalomorphae: Theraphosidae) venom

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 370-379 | Received 08 Oct 2020, Accepted 15 Jan 2021, Published online: 04 Feb 2021

References

  • Akef, H.M., 2018. Anticancer, antimicrobial, and analgesic activities of spider venoms. Toxicology research, 7 (3), 381–395.
  • Altschul, S.F., et al., 1990. Basic local alignment search tool. Journal of molecular biology, 215 (3), 403–410.
  • Altschul, S.F., et al., 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research, 25 (17), 3389–3402.
  • Arbuckle, K., 2017. Evolutionary context of venom in animals. In: A. Malhotra, ed. Evolution of venomous animals and their toxins. Dordrecht: Springer Netherlands, 3–31.
  • Barbaro, K.C., et al., 2005. Enzymatic characterization, antigenic cross-reactivity and neutralization of dermonecrotic activity of five Loxosceles spider venoms of medical importance in the Americas. Toxicon : official journal of the international society on toxinology, 45 (4), 489–499.
  • Bertani, R., 2012. Revision, cladistic analysis and biogeography of Typhochlaena C. L. Koch, 1850, Pachistopelma Pocock, 1901 and Iridopelma Pocock, 1901 (Araneae, Theraphosidae, Aviculariinae). ZooKeys, 230, 1–94.
  • Bianchetti, L., Oudet, C., and Poch, O., 2002. M13 endopeptidases: new conserved motifs correlated with structure, and simultaneous phylogenetic occurrence of PHEX and the bony fish. Proteins, 47 (4), 481–488.
  • Bland, N.D., et al., 2008. Bioinformatic analysis of the neprilysin (M13) family of peptidases reveals complex evolutionary and functional relationships. BMC evolutionary biology, 8, 16.
  • Bushmanova, E., et al., 2019. rnaSPAdes: a de novo transcriptome assembler and its application to RNA-Seq data. GigaScience, 8 (9), giz100.
  • Casewell, N.R., et al., 2009. Comparative venom gland transcriptome surveys of the saw-scaled vipers (Viperidae: Echis) reveal substantial intra-family gene diversity and novel venom transcripts. BMC genomics, 10, 564.
  • Desmazeaud, M.J., and Zevaco, C., 1976. General properties and substrate specificity of an intracellular soluble dipeptidase from Streptococcus diacetilactis. Annales de Biologie Animale Biochimie Biophysique, 16 (6), 851–736.
  • Devaraja, S., et al., 2008. A low molecular weight serine protease: purification and characterization from Hippasa agelenoides (funnel web) spider venom gland extract. Toxicon : official journal of the international society on toxinology, 52 (1), 130–138.
  • El-Amouri, S.S., et al., 2008. Neprilysin: an enzyme candidate to slow the progression of Alzheimer's disease. The American journal of pathology, 172 (5), 1342–1354.
  • El-Gebali, S., et al., 2019. The Pfam protein families database in 2019. Nucleic acids research, 47 (D1), D427–D432.
  • Estrada-Gomez, S., et al., 2015. Partial characterization of venom from the Colombian spider Phoneutria boliviensis (Aranae:Ctenidae). Toxins, 7 (8), 2872–2887.
  • Estrada-Gomez, S., Vargas Muñoz, L.J., and Quintana Castillo, J.C., 2013. Extraction and partial characterization of venom from the Colombian spider Pamphobeteus aff. nigricolor (Aranae:Theraphosidae). Toxicon : official journal of the international society on toxinology, 76, 301–309.
  • Fernandes, S. C. R., 2010. Caracterização química e biológica de compostos bioativos da peçonha da aranha caranguejeira Nhandu coloratovillosus (Schmidt, 1998). Dissertation (MSc). Universidade de Brasília.
  • Ferreira, F.R.B., et al., 2016. Evaluation of antimicrobial, cytotoxic, and hemolytic activities from venom of the spider Lasiodora sp. Toxicon : official journal of the international society on toxinology, 122, 119–126.
  • Foelix, R. F., 2011. Biology of spiders. 3rd ed. New York: Oxford University Press.
  • Fry, B.G., et al., 2009. The toxicogenomic multiverse: convergent recruitment of proteins into animal venoms. Annual review of genomics and human genetics, 10, 483–511.
  • Fu, L., et al., 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics (Oxford, England), 28 (23), 3150–3152.
  • Fukushima, C.S., and Bertani, R., 2017. Taxonomic revision and cladistic analysis of Avicularia Lamarck, 1818 (Araneae, Theraphosidae, Aviculariinae) with description of three new aviculariine genera. ZooKeys, 659, 1–185.
  • García-Arredondo, A., et al., 2015. Pharmacological characterization of venoms from three theraphosid spiders: Poecilotheria regalis, Ceratogyrus darlingi and Brachypelma epicureanum. The journal of venomous animals and toxins including tropical diseases, 21 (15), 1–9.
  • Gomes, P. C., and Palma, M. S., 2016. The nonpeptide low molecular mass toxins from spider venoms. In: P. Gopalakrishnakone, G.A. Corzo, M.E. De Lima and E. Diego-García, eds. Spider venoms. Dordrecht: Springer Netherlands, 3–19.
  • Gouy, M., Guindon, S., and Gascuel, O., 2010. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular biology and evolution, 27 (2), 221–224.
  • Hanna, S.L., et al., 2000. Comparison of proteins expressed by Pseudomonas aeruginosa strains representing initial and chronic isolates from a cystic fibrosis patient: an analysis by 2-D gel electrophoresis and capillary column liquid chromatography-tandem mass spectrometry. Microbiology, 146 (10), 2495–2508.
  • Holford, M., et al., 2018. Venoms to the rescue. Science (New York, N.Y..), 361 (6405), 842–844.
  • Khusro, A., et al., 2018. Venom as therapeutic weapon to combat dreadful diseases of 21st century: a systematic review on cancer, TB, and HIV/AIDS. Microbial Pathogenesis, 125, 96–107.
  • King, G.F., 2011. Venoms as a platform for human drugs: translating toxins into therapeutics. Expert Opinion on Biological Therapy, 11 (11), 1469–1484.
  • Kunalan, S., et al., 2018. Proteomic characterization of two medically important malaysian snake venoms, Calloselasma rhodostoma (Malayan Pit Viper) and Ophiophagus hannah (King Cobra). Toxins (basel), 10 (11), 434.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227 (5259), 680–685.
  • Li, B., and Dewey, C.N., 2011. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC bioinformatics, 12, 323.
  • Li, W., and Godzik, A., 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics (Oxford, England), 22 (13), 1658–1659.
  • Liu, G., et al., 2015. Global transcriptome analysis of the tentacle of the jellyfish Cyanea capillata using deep sequencing and expressed sequence tags: insight into the toxin- and degenerative disease-related transcripts. PLoS One, 10 (11), e0142680.
  • Luddecke, T., Vilcinskas, A., and Lemke, S., 2019. Phylogeny-guided selection of priority groups for venom bioprospecting: harvesting toxin sequences in tarantulas as a case study. Toxins (Basel), 11 (9), 488.
  • Mello Leitão, C. F. D., 1923. Theraphosoideas do Brasil São Paulo: Revista do Museu Paulista.
  • Monnet, V., 1995. Oligopeptidases from Lactococcus lactis. Methods in Enzymology, 248, 579–592.
  • Nagaraju, S., et al., 2006. Venom from spiders of the genus Hippasa: biochemical and pharmacological studies. Comparative biochemistry and physiology. Toxicology & pharmacology : CBP, 144 (1), 1–9.
  • National Center for Biotechnology Information, 2020 [online]. Available from: https://www.ncbi.nlm.nih.gov/Structure/cdd/cl14813 [Accessed 06 July 2020].
  • Nicholson, G. M., 2013. Spider Peptides. In: A.J. Kastin, ed. Handbook of biologically active peptides. 2nd ed. Boston: Academic Press, 461–472.
  • Pennisi, E., 2017. Untangling spider biology. Science (New York, N.Y.), 358 (6361), 288–291.
  • Perret, B.A., 1977. Proteolytic activity of tarantula venoms due to contamination with saliva. Toxicon : official journal of the international society on toxinology, 15 (6), 505–510.
  • Pineda, S.S., et al., 2020. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proceedings of the national academy of sciences of the United States of America, 117 (21), 11399–11408.
  • Rocha-E-Silva, T.A.A., Sutti, R., and Hyslop, S., 2009. Milking and partial characterization of venom from the Brazilian spider Vitalius dubius (Theraphosidae). Toxicon, 53 (1), 153–161.
  • Rojas-Azofeifa, D., et al., 2019. Biochemical characterization of the venom of Central American scorpion Didymocentrus krausi Francke, 1978 (Diplocentridae) and its toxic effects in vivo and in vitro. Comparative biochemistry and physiology. toxicology & pharmacology : CBP, 217, 54–67.
  • Rokyta, D.R., Wray, K.P., and Margres, M.J., 2013. The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics, 14, 394.
  • Rokyta, D.R., et al., 2015. The transcriptomic and proteomic basis for the evolution of a novel venom phenotype within the Timber Rattlesnake (Crotalus horridus). Toxicon : official journal of the international society on toxinology, 98, 34–48.
  • Stothard, P., 2000. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques, 28 (6), 1102–1104.
  • Tan, C.H., et al., 2015. Venom-gland transcriptome and venom proteome of the Malaysian King Cobra (Ophiophagus hannah). BMC genomics, 16 (1), 687.
  • Tan, K.Y., et al., 2017. Comparative venom gland transcriptomics of Naja kaouthia (Monocled Cobra) from Malaysia and Thailand: elucidating geographical venom variation and insights into sequence novelty. PeerJ., 5, e3142.
  • Turner, A.J., Isaac, R.E., and Coates, D., 2001. The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function. BioEssays, 23 (3), 261–269.
  • Undheim, E.A., et al., 2013. A proteomics and transcriptomics investigation of the venom from the Barychelid spider Trittame loki (brush-foot trapdoor). Toxins, 5 (12), 2488–2503.
  • Vassilevski, A.A., Kozlov, S.A., and Grishin, E.V., 2009. Molecular diversity of spider venom. Biochemistry. Biokhimiia, 74 (13), 1505–1534.
  • Walter, A., et al., 2017. Characterisation of protein families in spider digestive fluids and their role in extra-oral digestion. BMC Genomics, 18 (1), 600.
  • Wheeler, T.J., and Eddy, S.R., 2013. nhmmer: DNA homology search with profile HMMs. Bioinformatics (Oxford, England), 29 (19), 2487–2489.
  • World Spider Catalog, 2021. [online]. Available from: http://wsc.nmbe.ch [Accessed 04 January 2021].
  • Yoon, K.A., et al., 2020. Characterization of venom components and their phylogenetic properties in some aculeate bumblebees and wasps. Toxins (basel), 12 (1), 47.
  • Young, A.R., and Pincus, S.J., 2001. Comparison of enzymatic activity from three species of necrotising arachnids in Australia: Loxosceles rufescens, Badumna insignis and Lampona cylindrata. Toxicon : official journal of the international society on toxinology, 39 (2–3), 391–400.
  • Zevaco, C., and Desmazeaud, M.J., 1980. Hydrolysis of beta-casein and peptides by intracellular neutral protease of Streptococcus diacetylactis. Journal of dairy science, 63 (1), 15–24.
  • Zobel-Thropp, P.A., et al., 2019. Not so dangerous after all? Venom composition and potency of the Pholcid (Daddy Long-Leg) spider Physocyclus mexicanus. Frontiers in ecology and evolution, 7, 256.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.