219
Views
9
CrossRef citations to date
0
Altmetric
Research Articles

Azadirachtin-based biopesticide affects the respiration and digestion in Anticarsia gemmatalis caterpillars

, , ORCID Icon, , & ORCID Icon
Pages 466-475 | Received 08 Jan 2021, Accepted 16 Feb 2021, Published online: 02 Mar 2021

References

  • Afzal, M.B.S., et al., 2015. Characterization of indoxacarb resistance in Phenacoccus solenopsis Tinsley (Homoptera: Pseudococcidae): cross-resistance, strability and fitness cost. Journal of Asia-Pacific entomology, 18 (4), 779–785.
  • Afzal, M.B.S., et al., 2020. Laboratory selection, cross-resistance, and estimations of realized heritability of indoxacarb resistance in Phenacoccus solenopsis (Homoptera: Pseudococcidae). Pest management science, 76 (1), 161–168.
  • Agrofit., 2014. Sistema de Agrotóxicos Fitossanitários e Ministério da Agricultura. Presidente Prudente, Brasil: Pecuária e Abastecimento.
  • Almeida, G.D., et al., 2014. Citotoxicity in the midgut and fat body of Anticarsia gemmatalis (Lepidoptera: Geometridae) larvae exerted by neem seed extract. Invertebrate survival journal, 11, 79–86.
  • Amaral, K.D., et al., 2018. Azadirachtin impairs egg production in Atta sexdens leaf-cutting ant queens. Environmental pollution, 243 (B), 809–814.
  • Arthidoro de Castro, M.B., et al., 2020. Cytotoxic effects on the midgut, hypopharyngeal, glands and brain of Apis mellifera honey bee workers exposed to chronic concentrations of lambda-cyhalothrin. Chemosphere, 248, 126075.
  • Barnby, M.A. and Klocke, J.A., 1990. Effects of azadirachtin on levels of ecdysteroids and prothoracicotropic hormone-like activity in Heliothis virescens (Fabr.) larvae. Journal of insect physiology, 36 (2), 125–131.
  • Bengyella, L., et al., 2018. Global challenges faced by engineered Bacillus thuringiensis Cry genes in soybean (Glycine max L.) in the twenty-first century. 3 Biotech, 8 (11), 464.
  • Bernardes, R.C., et al., 2017. Azadirachtin-induced antifeeding in neotropical stingless bees. Apidologie, 48 (3), 275–285.
  • Bernardi, O., et al., 2012. Assessment of the high-dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest management science, 68 (7), 1083–1091.
  • Bezzar-Bendjazia, R., et al., 2017. Azadirachtin induced larval avoidance and antifeeding by disruption of food intake and digestive enzymes in Drosophila melanogaster (Diptera: Drosophilidae). Pesticide biochemistry and physiology, 143, 135–140.
  • Brügger, B.P., et al., 2019. Bioactivity of the Cymbopogon citratus (Poaceae) essential oil and its terpenoid constituents on the predatory bug, Podisus nigrispinus (Heteroptera: Pentatomidae). Scientific reports, 9 (1), 8358.
  • Carneiro, E., et al., 2018. Lepidopteran pests associated with the soybean cultivars phenology. Bioscience journal, 34, 112–121.
  • Carneiro, L., et al., 2020. The fungicide iprodione affects midgut cells of non-target honey bee Apis mellifera workers. Ecotoxicology and environmental safety, 189, 109991.
  • Castro, B.M.C., et al., 2021. Exposure to chlorantraniliprole reduces locomotion, respiration, and causes histological changes in the midgut of velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere, 263, 128008.
  • Castro, B.M.D.C., et al., 2019. Toxicity and cytopathology mediated by Bacillus thuringiensis in the midgut of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Scientific reports, 9 (1), 6667.
  • Chagnon, M., et al., 2015. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental science and pollution research, 22 (1), 119–134.
  • Correia, A.A., et al., 2013. Microscopic analysis of Spodoptera frugiperda (Lepidoptera: Noctuidae) embryonic development before and after treatment with azadirachtin, lufenuron, and deltamethrin. Journal of economic entomology, 106 (2), 747–755.
  • Cossolin, J.F.S., et al., 2019. Cytotoxicity of Piper aduncum (Piperaceae) essential oil in brown stink bug Euschistus heros (Heteroptera: Pentatomidae). Ecotoxicology, 28 (7), 763–770.
  • Dere, B., Altuntaş, H., and Nurullahoğlu, Z.U., 2015. Insecticidal and oxidative effects of azadirachtin on the model organism Galleria mellonella L. (Lepidoptera: Pyralidae). Archives of insect biochemistry and physiology, 89 (3), 138–152.
  • Dow, J.A.T., 1992. pH gradientes in lepidopteran midgut. Journal of experimental biology, 172, 355–375.
  • Ejaz, M., et al., 2017. Laboratory selection of chlorpyrifos resistance in an Invasive Pest, Phenacoccus solenopsis (Homoptera: Pseudococcidae): cross-resistance, stability and fitness cost. Pesticide biochemistry and physiology, 137, 8–14.
  • Erlandson, M.A., Toprak, U., and Hegedus, D.D., 2019. Role of the peritrophic matrix in insect-pathogen interactions. Journal of insect physiology, 117, 103894.
  • Fiaz, M., et al., 2018a. Squamocin induce histological and ultrastructural changes in the midgut cells of Anticarsia gemmatalis (Lepidoptera: Noctuidae). Ecotoxicology and environmental safety, 156, 1–8.
  • Fiaz, M., et al., 2018b. Toxicological and morphological effects of tebufenozide on Anticarsia gemmatalis (Lepidoptera: noctuidae) larvae. Chemosphere, 212, 337–345.
  • Fiaz, M., et al., 2019. Pyriproxyfen, a juvenile hormone analog, damages midgut cells and interferes with behaviors of Aedes aegypti larvae. PeerJ, 7, e7489.
  • Gómez, J.D., et al., 2020. Leaf metabolic profiles of two soybean genotypes differentially affect the survival and digestibility of Anticarsia gemmatalis caterpillars. Plant physiology and biochemistry, 155, 196–212.
  • Govindachari, T.R., et al., 1996. Insect antifeedant and growth-regulating activities of salannin and other C-seco limonoids from neem oil in relation to azadirachtin. Journal of chemical ecology, 22 (8), 1453–1461.
  • Hoffmann‐Campo, C.B., de Oliveira, E.B., and Moscardi, F., 1985. Criação massal da lagarta da soja (Anticarsia gemmatalis). In: Embrapa Soja‐Documentos (INFOTECA‐E). Londrina, Brazil: Embrapa‐‐CNPSO.
  • Homrich, M.S., et al., 2008. Resistance to Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae) in transgenic soybean (Glycine max (L.) Merrill Fabales, Fabaceae) cultivar IAS5 expressing a modified Cry1Ac endotoxin. Genetics and molecular biology, 31 (2), 522–531.
  • Insecticide Resistance Action Committee., 2009. IRAC susceptibility test methods 020 [online]. CABI Publ. Available from: https://irac-online.org/content/uploads/2009/09/Method_020_v3.2.pdf [Accessed 3 August 2019].
  • Isman, M.B., et al., 1990. Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadirachtin content. Journal of agricultural and food chemistry, 38 (6), 1406–1411.
  • Isman, M.B., Miresmailli, S., and Machial, C., 2011. Commercial opportunities for pesticides based on plant essential oils in agriculture, industry and consumer products. Phytochemistry reviews, 10 (2), 197–204.
  • Jallow, M.F., et al., 2019. Efficacy of some biorational insecticides against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) under laboratory and greenhouse conditions in Kuwait. Journal of applied entomology, 143 (3), 187–195.
  • Kilani-Morakchi, S., et al., 2017. Preimaginal exposure to azadirachtin affects food selection and digestive enzymes in adults of Drosophila melanogaster (Diptera: Drosophilidae). Pesticide biochemistry and physiology, 140, 58–64.
  • Lepier, A., et al., 1994. K+/H+ antiport in the tobacco hornworm midgut: the K+-transportinf componnte of the K+pump. Journal of experimental biology, 196, 361–373.
  • Levy, S.M., et al., 2007. Susceptibility/resistance of Anticarsia gemmatalis larvae to its nucleopolyhedrovirus (AgMNPV): structural study of the peritrophic membrane. Journal of invertebrate pathology, 96 (2), 183–186.
  • Ley, S.V., Denholm, A.A., and Wood, A., 1993. The chemistry of azadirachtin. Natural product reports, 10 (2), 109–157.
  • Martínez, L.C., et al., 2015. Bioactivity of six plant extracts on adults of Demotispa neivai (Coleoptera: Chrysomelidae). Jounral of insect science, 15, 34.
  • Martínez, L.C., et al., 2018a. Toxic effects of two essential oils and their constituents on the mealworm beetle, Tenebrio molitor. Bulletin of entomological research, 108 (6), 716–725.
  • Martínez, L.C., et al., 2018b. Permethrin induces histological and cytological changes in the midgut of the predatory bug, Podisus nigrispinus. Chemosphere, 212, 629–637.
  • Martínez, L.C., et al., 2019a. Exposure to insecticides reduces populations of Rhynchophorus palmarum in oil palm plantations with Bud Rot disease. Insects, 10 (4), 111.
  • Martínez, L.C., et al., 2019b. Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. Ecotoxicology and environmental safety, 167, 69–75.
  • Martinez, S.S. and Van Emden, H.F., 2001. Growth disruption, abnormalities and mortality of Spodoptera littoralis (Boisduval) (Lepidoptera: Noctuidae) caused by azadirachtin. Neotropical entomology, 30 (1), 113–125.
  • Mordue, A.J., et al., 1998. Actions of azadirachtin, a plant allelochemical, against insects. Pesticide science, 54 (3), 277–284.
  • Mordue, A.J., Evans, K.A., and Charlet, M., 1986. Azadirachtin, ecdysteroids and ecdysis in Locusta migratoria. Comparative biochemistry and physiology part C: comparative pharmacology, 85 (2), 297–301.
  • Morgan, E.D., 2009. Azadirachtin, a scientific gold mine. Bioorganic & medicinal chemistry, 17 (12), 4096–4105.
  • Nathan, S.S., et al., 2005. Efficacy of neem limonoids on Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae) the rice leaffolder. Crop protection, 24 (8), 760–763.
  • Senthil Nathan, S., et al., 2008. Effect of azadirachtin on acetylcholinesterase (AChE) activity and histology of the brown planthopper Nilaparvata lugens (Stal). Ecotoxicology and environmental safety, 70 (2), 244–250.
  • Plata-Rueda, A., et al., 2017. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Scientific reports, 7, 46406.
  • Plata-Rueda, A., et al., 2018. Terpenoid constituents of cinnamon and clove essential oils cause toxic effects and behavior repellency response on granary weevil, Sitophilus granarius. Ecotoxicology and environmental safety, 156, 263–270.
  • Plata-Rueda, A., et al., 2019a. Chlorantraniliprole-mediated effects on survival, walking abilities, and respiration in the coffee berry borer, Hypothenemus hampei. Ecotoxicology and environmental safety, 172, 53–58.
  • Plata-Rueda, A., et al., 2019b. Exposure to cyantraniliprole causes mortality and disturbs behavioral and respiratory responses in the coffee berry borer (Hypothenemus hampei). Pest management science, 75 (8), 2236–2241.
  • Plata-Rueda, A., et al., 2020a. Side-effects caused by chlorpyrifos in the velvetbean caterpillar Anticarsia gemmatalis (Lepidoptera: Noctuidae). Chemosphere, 259, 127530.
  • Plata-Rueda, A., et al., 2020b. Insecticidal and repellent activities of Cymbopogon citratus (Poaceae) essential oil and its terpenoids (citral and geranyl acetate) against Ulomoides dermestoides. Crop protection, 137, 105299.
  • Plata-Rueda, A., et al., 2020c. Acute toxicity and sublethal effects of lemongrass essential oil and their components against the granary weevil, Sitophilus granarius. Insects, 11 (6), 379.
  • Pourya, M., et al., 2020. Induced resistance in wheat Triticum aestivum L. by chemical- and bio- fertilizers against English aphid Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in greenhouse. Intertnational journal of tropical insect science, 40, 1043–1052.
  • Qiao, J., et al., 2014. Azadirachtin blocks the calcium channel and modulates the cholinergic miniature synaptic current in the central nervous system of Drosophila. Pest management science, 70 (7), 1041–1047.
  • Qin, D., et al., 2020. Antifeeding effects of azadirachtin on the fifth instar Spodoptera litura larvae and the analysis of azadirachtin on target sensilla around mouthparts. Archives of insect biochemistry and physiology, 103 (4), e21646.
  • Raizada, R.B., et al., 2001. Azadirachtin, a neem biopesticide: subchronic toxicity assessment in rats. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 39 (5), 477–483.
  • Rharrabe, K., et al., 2007. Diversity of detoxification pathways of ingested ecdysteroids among phytophagous insects. Archives of insect biochemistry and physiology, 65 (2), 65–73.
  • Santos, M.S., et al., 2015. Toxicity of an azadirachtin-based biopesticide on Diaphorina citri Kuwayama (Hemiptera: Liviidae) and its ectoparasitoid Tamarixia radiata (Waterston) (Hymenoptera: Eulophidae). Crop protection, 74, 116–123.
  • Santos-Junior, V.C., et al., 2020. Histopathological and cytotoxic changes induced by spinosad on midgut cells of the non-target predator Podisus nigrispinus Dallas (Heteroptera: Pentatomidae). Chemosphere, 238, 124585.
  • Schaaf, O., et al., 2000. Rapid and sensitive analysis of azadirachtin and related triterpenoids from neem (Azadirachta indica) by high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Journal of chromatography. A, 886 (1–2), 89–97.
  • Schmutterer, H., 1990. Properties and potential of natural pesticides from the neem tree, Azadirachta indica. Annual review of entomology, 35, 271–297.
  • Shafeek, A., et al., 2004. Alterations in acetylcholinesterase and electrical activity in the nervous system of cockroach exposed to the neem derivative, azadirachtin. Ecotoxicology and environmental safety, 59 (2), 205–208.
  • Shinfoon, C., et al., 2009. Growth‐disrupting effects of azadirachtin on the larvae of the Asiatic corn borer (Ostrinia furnacalis Guenée) (Lepid., Pyralidae). Zeitschrift Für Angewandte Entomologie, 99 (1–5), 276–284.
  • Silva, W.M., et al., 2020. Respiration, predatory behavior and prey consumption by Podisus nigrispinus (Heteroptera: Pentatomidae) nymphs exposed to some insecticides. Chemosphere, 261, 127720.
  • Sosa-Gómez, D.R. and Miranda, J.E., 2012. Fitness cost of resistance to Bacillus thuringiensis in velvetbean caterpillar Anticarsia gemmatalis Hübner (Lepidoptera, Noctuidae). Revista Brasileira de Entomologia, 56 (3), 359–362.
  • Souza, M.L., et al., 2019. Within-host interactions of Metarhizium rileyi strains and nucleopolyhedroviruses in Spodoptera frugiperda and Anticarsia gemmatalis (Lepidoptera: Noctuidae). Journal of invertebrate pathology, 162, 10–18.
  • Stefanini, M., De Martino, C., and Zamboni, L., 1967. Fixation of ejaculated spermatozoa for electron microscopy. Nature, 216 (5111), 173–174.
  • Terra, W.R., et al., 2019. Molecular physiology of insect midgut. Advances in insect physiology, 56, 117–163.
  • Terra, W.R., Costa, R.H., and Ferreira, C., 2006. Plasma membranes from insect midgut cells. Anais da Academia Brasileira de Ciencias, 78 (2), 255–269.
  • Terra, W.R. and Ferreira, C., 2020. Evolutionary trends of digestion and absorption in the major insect orders. Arthropod structure & development, 56, 100931.
  • Trumm, P. and Dorn, A., 2000. Effects of azadirachtin on the regulation of midgut peristalsis by the stomatogastric nervous system in Locusta migratoria. Phytoparasitica, 28 (1), 7–26.
  • Wang, Y., et al., 2020. The survival, growth, and detoxifying enzyme activities of grasshoppers Oedaleus asiaticus (Orthoptera: Acrididae) exposed to toxic rutin. Applied entomoly and zoology, 55, 385–393.
  • Zanuncio, J.C., et al., 2016. Toxic effects of the neem oil (Azadirachta indica) formulation on the stink bug predator, Podisus nigrispinus (Heteroptera: Pentatomidae). Scientific reports, 6, 30261.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.