68
Views
0
CrossRef citations to date
0
Altmetric
Articles

In vivo genotoxic and cytotoxic evaluation of venom obtained from the species of the snake ophryacus, cope, viperidae

, , , , , , , & ORCID Icon show all
Pages 1115-1123 | Received 13 Jul 2021, Accepted 30 Aug 2021, Published online: 21 Sep 2021

References

  • Almeida, J.R., et al., 2017. Snake venom peptides and low mass proteins: molecular tools and therapeutic agents. Current Medicinal Chemistry, 24 (30), 3254–3282.
  • Almeida, M., et al., 2018. Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (P LA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. International journal of biological macromolecules, 118(Pt A), 311–319. 
  • Al-Quraishy, S., Dkhil, M.A., and Abdel Moneim, A.E., 2014. Hepatotoxicity and oxidative stress induced by Naja haje crude venom. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 20 (1), 42.
  • Álvarez-González, I., 2011. The antigenotoxic effects of grapefruit juice on the damage induced by benzo (a) pyrene and evaluation of its interaction with hepatic and intestinal cytochrome P450 (Cyp) 1a1. Food and Chemical Toxicology, 49 (4), 807–811.
  • Amirian, S.V., 2004. Comparative evaluation of the effect of snake venoms on the system of hemocoagulation of animals. Fiziologichnyi Zhurnal, 50 (5), 73–79.
  • ARRIVE guidelines. n.d. Available from: https://arriveguidelines.org
  • Bradshaw, M.J., et al., 2016. Evaluation of cytotoxic activities of snake venoms toward breast (MCF-7) and skin cancer (A-375) cell lines. Cytotechnology, 68 (4), 687–700.
  • Bruserud, O., 2013. The snake venom Rhodocytin from Calloselasma rhodostoma- a clinically important toxin and a useful experimental tool for studies of C-type lectin-like receptor 2 (CLEC-2) ). Toxins, 5 (4), 665–674.
  • Calderon, L.A., et al., 2014. Antitumoral activity of snake venom proteins: new trends in cancer therapy. BioMed Research International, 2014, 203639–203658.
  • Campbell, J. A., and Lamar, W. W., 1989. The venomous reptiles of the western hemisphere. Vol. II. New York: Cornell University Press.
  • Canseco-Márquez, L., and Gutiérrez-Mayen, G., 2010. Anfibios y reptiles del valle de Tehuacán-Cuicatlán. CONABIO. 1a. Ed. Benemérita, Universidad Autónoma de Puebla. México.
  • Chaisakul, J., et al., 2016. Effects of animal venoms and toxins on hallmarks of cancer. Journal of Cancer, 7 (11), 1571–1578.,
  • Chan, Y.S., et al., 2016. Snake venom toxins: toxicity and medicinal applications. Applied Microbiology and Biotechnology, 100 (14), 6165–6181.
  • Colon, J.M., et al., 2013. Cytotoxic activities of (Ser49) phospholipase A2 from the venom of the saw-scaled vipers Echis ocellatus, Echis pyramidum leakeyi, Echis carinatus sochureki, and Echis coloratus. Toxicon, 71, 96–104.
  • Coral Galvani, N., et al., 2017. Genotoxicity evaluation induced by Tityus serrulatus scorpion venom in mice. Toxicon : official Journal of the International Society on Toxinology, 140, 132–138.
  • Costa, T.R., et al., 2018. CR-LAAO causes genotoxic damage in HepG2 tumor cells by oxidative stress. Toxicology, 404-405, 42–48.
  • Cristóbal-Luna, J.M., et al., 2018. Evaluation of teratogenicity and genotoxicity induced by kramecyne (KACY)). Saudi Pharmaceutical Journal : SPJ : The Official Publication of the Saudi Pharmaceutical Society, 26 (6), 829–838.
  • Del Brutto, O.H., and Del Brutto, V.J., 2012. Neurological complications of venomous snake bites: a review. Acta Neurologica Scandinavica, 125 (6), 363–372.
  • Echeverría, S., et al., 2018. Evaluation of pro-inflammatory events induced by Bothrops alternatus snake venom. Chemico-Biological Interactions, 281, 24–31.
  • Fenech, M., 2008. The micronucleus assay determination of chromosomal level DNA damage. Methods in Molecular Biology (Clifton, N.J.), 410, 185–216.
  • Grünwald, C.I., et al., 2015. A new species of Ophryacus (Serpentes: Viperidae: Crotalinae) from eastern Mexico, with comments on the taxonomy of related pitvipers. Mesoamerican Herpetology, 2, 388–416.
  • Hayashi, M., 2016. The micronucleus test-most widely used in vivo genotoxicity test. Genes and Environment : The Official Journal of the Japanese Environmental Mutagen Society, 38, 18–24.
  • Jadin, R.C., Smith, E.N., and Campbell, J.A., 2011. Unraveling a tangle of Mexican serpents: a systematic revision of highland pitvipers. Zoological Journal of the Linnean Society, 163 (3), 943–958.
  • Kerkkamp, H., et al., 2018. Whole snake venoms: Cytotoxic, anti-metastatic and antiangiogenic properties. Toxicon : official Journal of the International Society on Toxinology, 150, 39–49.
  • Knight, R.B., et al., 2019. Evaluation of vasoactivity after haemotoxic snake venom administration. Toxicon : official Journal of the International Society on Toxinology, 158, 69–76.
  • Machado, A.R.T., et al., 2018. The toxin BjussuLAAO-II induces oxidative stress and DNA damage, upregulates the inflammatory cytokine genes TNF and IL6, and downregulates the apoptotic-related genes BAX, BCL2 and RELA in human Caco-2 cells. International Journal of Biological Macromolecules, 109, 212–219.
  • Mackessy, S. P., 2010. Handbook of venoms and toxins of reptiles. 1st ed. USA: CRC Press/Taylor & Francis Group.
  • Madrigal-Bujaidar, E., et al., 2015. Evaluation of duloxetine as micronuclei inducer in an acute and a subchronic assay in mouse. Biological & Pharmaceutical Bulletin, 38 (8), 1245–1249.
  • Marcussi, S., et al., 2011. Evaluation of the genotoxicity of Crotalus durissus terrificus snake venom and its isolated toxins on human lymphocytes. Mutation Research, 724 (1-2), 59–63.
  • Marcussi, S., et al., 2013. Genotoxic effect of Bothrops snake venoms and isolated toxins on human lymphocyte DNA. Toxicon : official Journal of the International Society on Toxinology, 65, 9–14.
  • Menaldo, D.L., et al., 2015. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. Journal of Venoms Animals and Toxins Including Tropical Diseases, 21:28.
  • Moga, M.A., et al., 2018. Anticancer activity of toxins from bee and snake venom-an overview on ovarian cancer. Molecules, 23 (3), 692–713.
  • Moridikia, A., et al., 2018. Anticancer and antibacterial effects of Iranian viper (Vipera latifii) venom; an in-vitro study. Journal of Cellular Physiology, 233 (9), 6790–6797.
  • Neri-Castro, E., et al., 2019. Venom characterization of the three species of Ophryacus and proteomic profiling of O. sphenophrys unveils Sphenotoxin, a novel Crotoxin-like heterodimeric β-neurotoxin. Journal of Proteomics, 192, 196–207.
  • Novak Zobiole, N., et al., 2015. In vitro and in vivo genotoxic evaluation of Bothrops moojeni snake venom. Pharmaceutical Biology, 53 (6), 930–934.
  • Samy, R.P., Sethi, G., and Lim, L.H., 2016. A brief update on potential molecular mechanisms underlying antimicrobial and wound-healing potency of snake venom molecules. Biochemical Pharmacology, 115, 1–9.
  • Saviola, A.J., Modahl, C.M., and Mackessy, S.P., 2015. Disintegrins of crotalus simus tzabcan venom: Isolation, characterization and evaluation of the cytotoxic and anti-adhesion activities of tzabcanin, a new RGD disintegrin. Biochimie, 116, 92–102.
  • Silva, M.A., et al., 2018. Genotoxic effects of BnSP-6, a Lys-49 phospholipase A2 (PLA2) homologue from Bothrops pauloensis snake venom, on MDA-MB-231 breast cancer cells. International Journal of Biological Macromolecules, 118 (Pt A), 311–319.
  • Stransky, S., et al., 2018. In vitro assessment of cytotoxic activities of Lachesis muta muta snake venom. PLoS Neglected Tropical Diseases, 12 (4), e0006427–e0006444.
  • Tasoulis, T., and Isbister, G.K., 2017. A review and database of snake venom proteomes. Toxins, 9 (9), 290–223.
  • The reptile database, 2018. [Accessed 14 Sep 2018]. Available from: http://www.reptile-database.org
  • Theakston, R.D., and Laing, G.D., 2014. Diagnosis of snakebite and the importance of immunological tests in venom research. Toxins, 6 (5), 1667–1695.
  • Uzair, B., et al., 2018. Phosphodiesterases (PDEs) from snake venoms: therapeutic applications. Protein and Peptide Letters, 25 (7), 612–618.
  • Waheed, H., Moin, S.F., and Choudhary, M.I., 2017. Snake venom: From deadly toxins to life-saving therapeutics. Current Medicinal Chemistry, 24 (17), 1874–1891.
  • White, J., 2010. Venomous animals: clinical toxinology. Experentia Supplementum, 100, 233–291.3.
  • Yalcın, H.T., et al., 2014. Effect of Ottoman viper (Montivipera xanthina (Gray, 1849)) Venom on Various Cancer Cells and on Microorganisms. Cytotechnology, 66 (1), 87–94.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.