306
Views
0
CrossRef citations to date
0
Altmetric
Reviews

Salamanders and caecilians, neglected from the chemical point of view

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1304-1332 | Received 30 Jun 2021, Accepted 01 Sep 2021, Published online: 27 Sep 2021

References

  • Arenas Gómez, C.M., et al., 2020. A de novo reference transcriptome for Bolitoglossa vallecula, an Andean mountain salamander in Colombia. Data in brief, 29, 105256.
  • Arnold, S.J., 1982. A quantitative approach to antipredator performance: salamander defense against snake. Copeia, 1982 (2), 247–253.
  • Arun, D., et al., 2019. Light and transmission electron microscopic structure of skin glands and dermal scales of a caecilian amphibian Gegeneophis ramaswamii, with a note on antimicrobial property of skin gland secretion. Microscopy research and technique, 82 (8), 1267–1276.
  • Arun, D., et al., 2020. An insight into the skin glands, dermal scales and secretions of the caecilian amphibian Ichthyophis beddomei. Saudi journal of biological sciences, 27 (10), 2683–2690.
  • Auawithoothij, W., and Noomhorm, A., 2012. Shewanella putrefaciens, a major microbial species related to tetrodotoxin (TTX)-accumulation of puffer fish Lagocephalus lunaris. Journal of applied microbiology, 113 (2), 459–465.
  • Bachmayer, H., and Michl, H., 1965. Über hämolytisch wirksame Stoffe in Molchgiften. Monatshefte für Chemie, 96 (4), 1166–1172.
  • Barrett, K., and Guyer, C., 2008. Differential responses of amphibians and reptiles in riparian and stream habitats to land use disturbances in western Georgia, USA. Biological conservation, 141 (9), 2290–2300.
  • Basanta, M.D., Rebollar, E.A., and Parra-Olea, G., 2019. Potential risk of Batrachochytrium salamandrivorans in Mexico. PLoS One, 14 (2), e0211960.
  • Beale, D. J., Kouremenos, K. A., and Palombo, E. A., 2016. Beyond metabolomics: A review of multi-omics-based approaches. In: Microbial Metabolomics: applications in clinical, environmental, and industrial microbiology. Switzerland: Springer International Publishing.
  • Becker, H., 1986. Endogenous substances of fire and Alpine salamanders. Pharmazie in unserer zeit, 15 (4), 97–106.
  • Berger, M., Gray, J.A., and Roth, B.L., 2009. The expanded biology of serotonin. Annual review of medicine, 60, 355–366.
  • Boswell, T., et al., 2006. Identification of a non-mammalian leptin-like gene: Characterization and expression in the tiger salamander (Ambystoma tigrinum). General and comparative endocrinology, 146 (2), 157–166.
  • Brandon, R.A., and Huheey, J.E., 1981. Toxicity in the plethodontid salamanders Pseudotriton ruber and Pseudotriton montanus (Amphibia, Caudata). Toxicon, 19 (1), 25–31.
  • Brandon, R.A., Labanick, G.M., and Huheey, J.E., 1979. Relative palatability, defensive behavior, and mimetic relationships of red salamanders (Pseudotriton ruber), mud salamanders (Pseudotriton montanus), and red efts (Notophthalmus viridescens). Herpetologica, 35 (4), 289–303.
  • Breckenridge, W.R., and Murugapillai, R., 1974. Mucous glands in the skin of Ichthyophis glutinosus (Amphibia: Gymnophiona). Ceylon journal of science, 11 (1), 43–52.
  • Breckenridge, W.R., Nathanael, S., and Pereira, L., 1987. Some aspects of the biology and development of Ichthyophis glutinosus (Amphibia: Gymnophiona). Journal of zoology, 211 (3), 437–449.
  • Briggs, C.J., Knapp, R.A., and Vredenburg, V.T., 2010. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proceedings of the national academy of sciences of the United States of America, 107 (21), 9695–9700.
  • Brodie, E.D., 1968. Investigations on the skin toxin of the red-spotted newt, Notophthalmus viridescens viridescens. American midland naturalist, 80 (1), 276–280.
  • Brodie, E.D., et al., 2005. Parallel arms races between garter snakes and newts involving tetrodotoxin as the phenotypic interface of coevolution. Journal of chemical ecology, 31 (2), 343–356.
  • Brodie, E.D., Ridenhour, B.J., and Brodie, E.D., 2002. The evolutionary response of predators to dangerous prey: Hotspots and coldspots in the geographic mosaic of coevolution between garter snakes and newts. Evolution, 56 (10), 2067–2082.
  • Brodie, E. D., and Smatresk, N. J., 1990. The antipredator arsenal of fire salamanders: Spraying of secretions from highly pressurized dorsal skin glands. Lawrence, KS, EUA:Herpetologists' League.
  • Brodie, E.D., III., and Brodie, E.D., Jr., 1990. Tetrodotoxin resistance in garter snakes: An evolutionary response of predators to dangerous prey. Evolution, 44 (3), 651–659.
  • Brodie, E. D., Jr., 1983. Antipredator adaptations of salamanders: Evolution and convergence among terrestrial species. In: Margaris, N.S.; Arianoutsou-Faraggitaki, M.; Reiter, R.J.(Eds.). Adaptations to terrestrial environments. Boston: Springer.
  • Brodie, E.D., Jr., Ducey, P.K., and Baness, E.A., 1991. Antipredator skin secretions of some tropical salamanders (Bolitoglossa) are toxic to snake predators. Biotropica, 23 (1), 58.
  • Brodie, E.D., Jr, and Gibson, L.S., 1969. Defensive behavior and skin glands of the Northwestern salamander, Ambystoma gracile. Herpetologica, 25, 187–194.
  • Brodie, E.D., Jr, Hensel, J.L., and Johnson, J.A., 1974. Toxicity of the Urodele Amphibians Taricha, Notophthalmus, Cynops and Paramesotriton (Salamandridae). Copeia, 1974 (2), 506–511.
  • Brodie, E.D., Jr, Nowak, R.T., and Harvey, W.R., 1979. The effectiveness of antipredator secretions and behavior of selected salamanders against shrews. Copeia, 1979 (2), 270–274.
  • Brodie, E.D., Jr, Nussbaum, R.A., and DiGiovanni, M., 1984. Antipredator adaptations of Asian salamanders (Salamandridae). Herpetologica, 40, 56–68.
  • Brown, M.S., and Mosher, H.S., 1963. Tarichatoxin: Isolation and purification. Science, 140 (3564), 295–296.
  • Brunelli, E., et al., 2005. Localization of two nitric oxide synthase isoforms, eNOS and iNOS, in the skin of Triturus italicus (Amphibia, Urodela) during development. Comparative biochemistry and physiology part a: Molecular & integrative physiology, 142 (2), 249–255.
  • Bucciarelli, G.M., et al., 2014. Quantifying tetrodotoxin levels in the California newt using a non-destructive sampling method. Toxicon, 80, 87–93.
  • Buchwald, H.D., et al., 1964. Identity of Tarichatoxin and Tetrodotoxin. Science, 143 (3605), 474–475.
  • von Byern, J., et al., 2017a. Chemical characterization of the adhesive secretions of the salamander Plethodon shermani (Caudata, Plethodontidae). Scientific reports, 7 (1), 6647.
  • von Byern, J., et al., 2017b. Salamanders on the bench - A biocompatibility study of salamander skin secretions in cell cultures. Toxicon, 135, 24–32.
  • Cardall, B.L., et al., 2004. Secretion and regeneration of tetrodotoxin in the rough-skin newt (Taricha granulosa). Toxicon, 44 (8), 933–938.
  • Catenazzi, A., et al., 2011. Batrachochytrium dendrobatidis y el Colapso de la Riqueza de Especies y Abundancia de Anuros en el Parque Nacional del Manu, Sureste de Perú. Conservation biology, 25 (2), 382–391.
  • Cei, J.M., and Erspamer, V., 1966. Biochemical taxonomy of South American amphibians by means of skin amines and polypeptides. Copeia, 1966 (1), 74–78.
  • Cei, J.M., Erspamer, V., and Roseghini, M., 1968. Taxonomic and evolutionary significance of biogenic amines and polypeptides in amphibian skin. II. Toads of the genera Bufo and Melanophryniscus. Systematic zoology, 17 (3), 232–245.
  • Chahl, L.A., and Kirk, E.J., 1975. Toxins which produce pain. Pain, 1 (1), 3–49.
  • Cheng, C.A., et al., 1995. Microflora and tetrodotoxin-producing bacteria in a gastropod, Niotha clathrata. Food and chemical toxicology, 33 (11), 929–934.
  • Cheng, T.L., et al., 2011. Coincident mass extirpation of neotropical amphibians with the emergence of the infectious fungal pathogen Batrachochytrium dendrobatidis. Proceedings of the national academy of sciences of the United States of America, 108 (23), 9502–9507.
  • Clarke, B.T., 1997. The natural history of amphibian skin secretions, their normal functioning and potential medical applications. Biological reviews of the cambridge philosophical society, 72 (3), 365–379.
  • Corn, P.S., 2005. Climate change and amphibians. Animal biodiversity and conservation, 28.1, 59–67.
  • Daly, J.W., 1995. The chemistry of poisons in amphibian skin. Proceedings of the national academy of sciences of the United States of America, 92 (1), 9–13.
  • Daly, J.W., Myers, C.W., and Whittaker, N., 1987. Further classification of skin alkaloids from neotropical poison frogs (Dendrobatidae), with a general survey of toxic/noxious substances in the Amphibia. Toxicon, 25 (10), 1023–1095.
  • Daly, J.W., Spande, T.F., and Garraffo, H.M., 2005. Alkaloids from amphibian skin: A tabulation of over eight-hundred compounds. Journal of natural products, 68 (10), 1556–1575.
  • De-Miguel, F.F., and Trueta, C., 2005. Synaptic and extrasynaptic secretion of serotonin. Cellular and molecular neurobiology, 25 (2), 297–312.
  • Deng, J., et al., 2019. A bioinspired medical adhesive derived from skin secretion of Andrias davidianus for wound healing. Advanced functional materials, 29 (31), 1809110.
  • Digiovanni, M., and Brodie, E. D., Jr., 1981. Efficacy of skin glands in protecting the salamander Ambystoma opacum from repeated attacks by the shrew Blarina brevicauda. Lawrence, KS, EUA:Herpetologists' League.
  • Dodd, C.K., Jr, Johnson, J.A., and Brodie, E.D., Jr, 1974. Noxious skin secretions of an eastern small Plethodon, P. nettingi hubrichti. Journal of herpetology, 8 (1), 89–92.
  • Duellman, W. E., William, E., and Trueb, L., 1994. Biology of amphibians. Baltimore and London: Johns Hopkins University Press.
  • Erspamer, V., 1966. Occurrence of indolealkylamines in nature. In: Vittorio Erspamer (Ed.). 5-Hydroxytryptamine and related indolealkylamines. Berlin, German:Springer-Verlag Berlin Heidelberg 132–181.
  • Erspamer, V., 1971. Biogenic amines and active polypeptides of the amphibian skin. Annual review of pharmacology, 11 (1), 327–350.
  • Erspamer, V., Bertaccini, G., and Urakawa, N., 1964. Biogenic amines and active polypeptides in the skin of ten Japanese amphibian species. Japanese journal of pharmacology, 14 (4), 468–473.
  • Erspamer, V., and Glässer, A., 1960. The pharmacological actions of (m-hydroxyphenethyl) trimethylammonium (leptodactyline). British journal of pharmacology and chemotherapy, 15 (1), 14–22.
  • Evans, C.M., and Brodie, E.D., 1994. Adhesive strength of amphibian skin secretions. Journal of herpetology, 28 (4), 499–502.
  • Fabing, H.D., and Hawkins, J.R., 1956. Intravenous bufotenine injection in the human being. Science, 123 (3203), 886–887.
  • Fan, W., et al., 2017. Comparative transcriptome analyses reveal the genetic basis underlying the immune function of three amphibians' skin. PLoS one, 12 (12), e0190023.
  • Faust, E.S., 1898. Beiträge zur Kenntniss des Samandarins. Archiv für experimentelle pathologie und pharmakologie, 41 (4-5), 229–245.
  • Feldman, C.R., et al., 2009. The evolutionary origins of beneficial alleles during the repeated adaptation of garter snakes to deadly prey. Proceedings of the national academy of sciences of the United States of America, 106 (32), 13415–13420.
  • Ferrer, R.P., and Zimmer, R.K., 2007. The scent of danger: Arginine as an olfactory cue of reduced predation risk. The Journal of experimental biology, 210 (Pt 10), 1768–1775.
  • Ferroni Schwartz, E.N., Schwartz, C.A., and Sebben, A., 1998. Occurrence of hemolytic activity in the skin secretion of the caecilian Siphonops paulensis. Natural toxins, 6 (5), 179–182.
  • Schwartz, E.N., et al., 1999. Indirect cardiotoxic activity of the caecilian Siphonops paulensis (Gymnophiona, Amphibia) skin secretion. Toxicon, 37 (1), 47–54.
  • Fisher, M.C., and Garner, T.W.J., 2020. Chytrid fungi and global amphibian declines. Nature reviews microbiology, 18 (6), 332–343.
  • Fisher, M.C., Garner, T.W.J., and Walker, S.F., 2009. Global emergence of Batrachochytrium dendrobatidis and amphibian chytridiomycosis in space, time, and host. Annual review of microbiology, 63, 291–310.
  • Frost, D. R., 2021. Amphibian species of the world: an online reference. Version 6.1 [online]. Available from: https://amphibiansoftheworld.amnh.org/index.php.
  • Gall, B.G., et al., 2012. Female newts (Taricha granulosa) produce tetrodotoxin laden eggs after long term captivity. Toxicon, 60 (6), 1057–1062.
  • Gall, B.G., et al., 2011. Tetrodotoxin levels in larval and metamorphosed newts (Taricha granulosa) and palatability to predatory dragonflies. Toxicon, 57 (7-8), 978–983.
  • Gall, B.G., et al., 2014. Tetrodotoxin concentrations within a clutch and across embryonic development in eggs of the rough-skinned newts (Taricha granulosa). Toxicon, 90, 249–254.
  • Geffeney, S., et al., 2002. Mechanisms of adaptation in a predator-prey arms race: TTX-resistant sodium channels. Science, 297 (5585), 1336–1339.
  • Geffeney, S.L., et al., 2005. Evolutionary diversification of TTX-resistant sodium channels in a predator-prey interaction. Nature, 434 (7034), 759–763.
  • Geng, X., et al., 2015. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). Journal of proteomics, 119, 196–208.
  • Geng, X., et al., 2019. RNA-seq analysis provides insight into molecular adaptations of Andrias davidianus. Development genes and evolution, 229 (5-6), 197–206.
  • Gower, D.J., and Wilkinson, M., 2005. Conservation biology of caecilian amphibians. Conservation biology, 19 (1), 45–55.
  • Gray, M.J., et al., 2015. Batrachochytrium salamandrivorans: the North American response and a call for action. PLoS Pathogens, 11 (12), e1005251.
  • Guo, W., et al., 2012. Major biological activities of the skin secretion of the Chinese giant salamander, Andrias davidianus. Zeitschrift Fur Naturforschung C, journal of biosciences, 67 (1-2), 86–92.
  • Habermehl, G., 1963a. Partialsynthese und absolute konfiguration des samandaridins. Chemische berichte, 96 (3), 840–844.
  • Habermehl, G., 1963b. Die Konstitution und konfiguration des samandaridins. Chemische berichte, 96 (1), 143–151.
  • Habermehl, G., 1964a. Cholesterin und Cholesterinester aus dem Hautdrüsensekret von Salamandra maculosa taeniata. Justus Liebigs Annalen Der Chemie, 680 (1), 104–107.
  • Habermehl, G., 1964b. O-Acetyl-Samandarin im Gift von Salamandra maculosa. Justus Liebigs Annalen Der Chemie, 679 (1), 164–167.
  • Habermehl, G., 1966. Die Konstitution des Samandenons. Chemische Berichte, 99 (5), 1439–1442.
  • Habermehl, G., 1969. Chemistry and biochemistry of amphibian poisons. Die Naturwissenschaften, 56 (12), 615–622.
  • Habermehl, G., 1971. Toxicology, pharmacology, chemistry, and biochemistry of salamander venom. In: W. Bücherl and E.E. Buckey, eds. Venomous animals and their venoms Vol II. New York. 569–584.
  • Habermehl, G., 1981. Amphibia (Amphibians). In: Venomous animals and their toxins. Berlin, German: Springer, 112–129.
  • Habermehl, G., and Göttlicher, S., 1965. Die Konstitution und Konfiguration des Cycloneosamndions. Chemische Berichte, 98 (1), 1–10.
  • Habermehl, G., and Haaf, A., 1969. Konstitution und Synthese des Samanins. Justus liebigs annalen der chemie, 722 (1), 155–161.
  • Habermehl, G., and Haaf, G., 1965. Cycloneosamandaridin, ein neues Nebenalkaloid aus Salamandra maculosa. Chemische berichte, 98 (9), 3001–3005.
  • Habermehl, G., and Preusser, H.-J., 1969. Hemmung des Wachstums von Pilzen und Bakterien durch das Hautdrüsensekret von Salamandra maculosa. Zeitschrift für naturforschung B, 24 (12), 1599–1601.
  • Habermehl, G., and Spiteller, G., 1967. Mass spectrum of salamander alkaloids. Justus liebigs annalen der chemie, 706 (1), 213–222.
  • Habermehl, G., and Vogel, G., 1969. Samandinine, a minor alkaloid from Salamandra maculosa Laur. Toxicon, 7 (2), 163–164.
  • Haider, S., and Pal, R., 2013. Integrated analysis of transcriptomic and proteomic data. Current genomics, 14 (2), 91–110.
  • Hamning, V.K., Yanites, H.L., and Peterson, N.L., 2000. Characterization of adhesive and neurotoxic components in skin granular gland secretions of Ambystoma tigrinum. Copeia, 2000 (3), 856–859.
  • Hanifin, C.T., 2010. The chemical and evolutionary ecology of tetrodotoxin (TTX) toxicity in terrestrial vertebrates. Marine drugs, 8 (3), 577–593.
  • Hanifin, C.T., Brodie, E.D., III., and Brodie, E.D., Jr., 2002. Tetrodotoxin levels of the rough-skin newt, Taricha granulosa, increase in long-term captivity. Toxicon, 40 (8), 1149–1153.
  • Hanifin, C.T., Brodie, E.D., III., and Brodie, E.D., Jr., 2003. Tetrodotoxin levels in eggs of the rough-skin newt, Taricha granulosa, are correlated with female toxicity. Journal of chemical ecology, 29 (8), 1729–1739.
  • Hanifin, C.T., Brodie, E.D., III., and Brodie, E.D., Jr., 2004. A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa. Toxicon, 43 (3), 243–249.
  • Hanifin, C.T., Brodie, E.D., Jr., and Brodie, E.D., III, 2008. Phenotypic mismatches reveal escape from arms-race coevolution. PLoS biology, 6 (3), e60–
  • Hanifin, C.T., and Gilly, W.F., 2015. Evolutionary history of a complex adaptation: Tetrodotoxin resistance in salamanders. Evolution, 69 (1), 232–244.
  • Hanifin, C.T., et al., 1999. Toxicity of dangerous prey: Variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa. Journal of chemical ecology, 25 (9), 2161–2175.
  • Hensel, J.L., Jr,., and Brodie, E.D., Jr, 1976. An experimental study of aposematic coloration in the salamander Plethodon jordani. Copeia, 1976 (1), 59–65.
  • Hopkins, G.R., and Migabo, S.W., 2010. Antipredator skin secretions of the long-toed salamander (Ambystoma macrodactylum) in its northern range. Journal of herpetology, 44 (4), 627–633.
  • Hurlbert, S.H., 1970. Predator responses to the vermilion-spotted newt (Notophthalmus viridescens). Journal of herpetology, 4 (1/2), 47–55.
  • Jared, C., et al., 2018. Skin gland concentrations adapted to different evolutionary pressures in the head and posterior regions of the caecilian Siphonops annulatus. Scientific reports, 8 (1), 3576–3577.
  • Jaussi, R., and Kunz, P.A., 1978. Isolation of the major toxic protein from the skin venom of the crested newt, Triturus cristatus. Experientia, 34 (4), 503–504.
  • Jiang, W., et al., 2015. Purification and characterization of cholecystokinin from the skin of salamander Tylototriton verrucosus. Dong wu Xue Yan Jiu - zoological research, 36 (3), 174–177.
  • Johnson, P.T.J., et al., 2018. Of poisons and parasites-the defensive role of tetrodotoxin against infections in newts. The Journal of animal ecology, 87 (4), 1192–1204.
  • Jost, M.C., et al., 2008. Toxin-resistant sodium channels: Parallel adaptive evolution across a complete gene family. Molecular biology and evolution, 25 (6), 1016–1024.
  • Kao, C.Y., 1966. Tetrodotoxin, Saxitoxin and their significance in the study of excitation phenomena. Pharmacological reviews, 18 (2), 997–1049.
  • Karış, M., et al., 2018. Major biological activities and protein profiles of skin secretions of Lissotriton vulgaris and Triturus ivanbureschi. Turkish journal of biochemistry, 43 (6), 605–612.
  • Kaumann, A.J., and Levy, F.O., 2006. 5-hydroxytryptamine receptors in the human cardiovascular system. Pharmacology & therapeutics, 111 (3), 674–706.
  • Kellaway, C.H., 1939. Animal poisons. Annual review of biochemistry, 8 (1), 541–556.
  • Knepper, J., et al., 2019. Isolation and identification of alkaloids from poisons of fire salamanders (Salamandra salamandra). Journal of natural products, 82 (5), 1319–1324.
  • Kotaki, Y., and Shimizu, Y., 1993. 1-Hydroxy-5,11-dideoxytetrodotoxin, the first N-hydroxy and ring-deoxy derivative of tetrodotoxin found in the newt Taricha granulosa. Journal of the American chemical society, 115 (3), 827–830.
  • Kudo, Y., et al., 2020. Structures of N-hydroxy-type tetrodotoxin analogues and bicyclic guanidinium compounds found in toxic newts. Journal of natural products, 83 (9), 2706–2717.
  • Kudo, Y., et al., 2012. Isolation and structural determination of the first 8-epi-type tetrodotoxin analogs from the newt, Cynops ensicauda popei, and comparison of tetrodotoxin analogs profiles of this newt and the puffer fish, Fugu poecilonotus. Marine drugs, 10 (3), 655–667.
  • Kupfer, A., et al., 2006. Parental investment by skin feeding in a caecilian amphibian. Nature, 440 (7086), 926–929.
  • Lai, R., et al., 2002a. Biological activities of skin secretions of the salamander Tylototriton verrucosus. Journal of natural toxins, 11 (3), 245–250.
  • Lai, R., et al., 2002b. Comparative study of the biological activities of the skin secretions from six common Chinese amphibians. Zoological research, 23 (2), 113–119.
  • Largen, W., and Woodley, S.K., 2008. Cutaneous tail glands, noxious skin secretions, and scent marking in a terrestrial salamander (Plethodon shermani). Herpetologica, 64 (3), 270–280.
  • Lehman, E.M., Brodie, E.D., Jr., and Brodie, E.D., III, 2004. No evidence for an endosymbiotic bacterial origin of tetrodotoxin in the newt Taricha granulosa. Toxicon, 44 (3), 243–249.
  • Levenson, C.H., and Woodhull, A.M., 1979. The occurrence of a tetrodotoxin-like substance in the red-spotted newt, Notophthalmus viridescens. Toxicon 17 (2), 184–187.
  • Li, F., et al., 2015. RNA-Seq analysis and gene discovery of Andrias davidianus using Illumina short read sequencing. PLoS one, 10 (4), e0123730.
  • Lips, K.R., et al., 2006. Emerging infectious disease and the loss of biodiversity in a Neotropical amphibian community. Proceedings of the national academy of sciences of the United States of America, 103 (9), 3165–3170.
  • Lüddecke, T., et al., 2018. A salamander's toxic arsenal: Review of skin poison diversity and function in true salamanders, genus Salamandra. Die Naturwissenschaften, 105 (9-10), 56.
  • Mailho-Fontana, P.L., et al., 2020. Morphological evidence for an oral venom system in caecilian amphibians. iScience, 23 (7), 101234.
  • Mailho-Fontana, P.L., et al., 2019. Variations in tetrodotoxin levels in populations of Taricha granulosa are expressed in the morphology of their cutaneous glands. Scientific reports, 9 (1), 18490.
  • Marion, Z.H., and Hay, M.E., 2011. Chemical defense of the eastern newt (Notophthalmus viridescens): Variation in efficiency against different consumers and in different habitats. PLoS One, 6 (12), e27581.
  • Martel, A., et al., 2014. Recent introduction of a chytrid fungus endangers Western Palearctic salamanders. Science, 346 (6209), 630–631.
  • Martel, A., et al., 2013. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proceedings of the national academy of sciences of the United States of America, 110 (38), 15325–15329.
  • Martin, W.R., and Sloan, J.W., 1970. Effects of infused tryptamine in man. Psychopharmacologia, 18 (3), 231–237.
  • Mason, J.R., Rabin, M.D., and Stevens, D.A., 1982. Conditioned taste aversions: Skin secretions used for defense by tiger salamanders, Ambystoma tigrinum. Copeia, 1982 (3), 667–671.
  • Mebs, D., Arakawa, O., and Yotsu-Yamashita, M., 2010. Tissue distribution of tetrodotoxin in the red-spotted newt Notophthalmus viridescens. Toxicon, 55 (7), 1353–1357.
  • Mebs, D., and Pogoda, W., 2005. Variability of alkaloids in the skin secretion of the European fire salamander (Salamandra salamadra terrestris). Toxicon, 45 (5), 603–606.
  • Mebs, D., and Yotsu-Yamashita, M., 2012. Tetrodotoxin in North-American Newts. Toxicon, 60 (2), 120.
  • De Meester, G., et al., 2021. Toxin variation among salamander populations: discussing potential causes and future directions. Integrative zoology, 16 (3), 336–353.
  • Meng, P., et al., 2013. The first salamander defensin antimicrobial peptide. PLoS one, 8 (12), e83044.
  • Meyer, W., et al., 2007. Possible antimicrobial defense by free sugars on the epidermal surface of aquatic vertebrates. Aquatic biology, 1 (2), 167–175.
  • Michl, H., and Molzer, H., 1965. The occurrence of l-leucyl-β-naphthylamide (LNA) splitting enzymes in some amphibia and reptile venoms. Toxicon, 2 (4), 281–282.
  • Moodie, G.E.E., 1978. Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin. Canadian journal of zoology, 56 (4), 1005–1008.
  • Mosher, H.S., et al., 1964. Tarichatoxin-Tetrodotoxin: A potent neurotoxin. Science, 144 (3622), 1100–1110.
  • Mu, L., et al., 2014. A potential wound-healing-promoting peptide from salamander skin. FASEB journal, 28 (9), 3919–3929.
  • Myers, G.S., 1942. Notes on pacific coast Triturus. Copeia, 1942 (2), 77–82.
  • Nakagawa, T., Jang, J., and Yotsu-Yamashita, M., 2006. Hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry of tetrodotoxin and its analogs. Analytical biochemistry, 352 (1), 142–144.
  • Nascimento, A.C., et al., 2003. Antimicrobial peptides from anurans skin secretions. Protein and peptide letters, 10 (3), 227–238.
  • Netolizky, F., 1904. Untersuchungen über den giftigen Bestandteil des Alpesalamanders, Salamandra atra Laur. Archiv für experimentelle pathologie und pharmakologie, 51 (9), 118–129.
  • Noguchi, T., and Arakawa, O., 2008. Tetrodotoxin - Distribution and accumulation in aquatic organisms, and cases of human intoxication. Marine drugs, 6 (2), 220–242.
  • Nowak, R.T., and Brodie, E.D., Jr, 1978. Rib penetration and associated antipredator adaptations in the salamander Pleurodeles waltl (Salamandridae). Copeia, 1978 (3), 424–429.
  • Oka, K., 1980. Synthetic studies of salamander alkaloids, an animal venom. Journal of the pharmaceutical society of Japan, 100 (3), 227–240.
  • Page Fredericks, L., and Dankert, J.R., 2000. Antibacterial and hemolytic activity of the skin of the terrestrial salamander, Plethodon cinereus. Journal of experimental zoology, 287 (5), 340–345.
  • Pei, J., and Jiang, L., 2017. Antimicrobial peptide from mucus of Andrias davidianus: Screening and purification by magnetic cell membrane separation technique. International journal of antimicrobial agents, 50 (1), 41–46.
  • Pennisi, E., 1999. Meeting spotlights creatures great and small. Science, 283 (5402), 623–625.
  • Pereira, K.E., et al., 2018. Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens. Journal of experimental biology, 221 (14), jeb183707.
  • Pinto, E.G., et al., 2014. Antileishmanial and antitrypanosomal activity of the cutaneous secretion of Siphonops annulatus. The journal of venomous animals and toxins including tropical diseases, 20 (1), 50–58.
  • Pires, O.R., et al., 2003. The occurrence of 11-oxotetrodotoxin, a rare tetrodotoxin analogue, in the brachycephalidae frog Brachycephalus ephippium. Toxicon, 42 (5), 563–566.
  • Pires, O.R., et al., 2005. Further report of the occurrence of tetrodotoxin and new analogues in the Anuran family Brachycephalidae. Toxicon, 45 (1), 73–79.
  • Plácido, A., et al., 2020. The antioxidant peptide salamandrin-i: First bioactive peptide identified from skin secretion of Salamandra genus (Salamandra salamandra). Biomolecules, 10 (4), 512.
  • Preißler, K., et al., 2019. More yellow more toxic? Sex rather than alkaloid content is correlated with yellow coloration in the fire salamander. Journal of zoology, 308 (4), 293–300.
  • Preusser, H.J., et al., 1975. Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon, 13 (4), 285–288.
  • Qu, M., et al., 2015. Purification of a secreted lectin from Andrias davidianus skin and its antibacterial activity. Comparative biochemistry and physiology Part C: toxicology & pharmacology, 167, 140–146.
  • Reimche, J.S., et al., 2020. The geographic mosaic in parallel: Matching patterns of newt tetrodotoxin levels and snake resistance in multiple predator-prey pairs. The journal of animal ecology, 89 (7), 1645–1657.
  • Rickrode, T.E., Mueller, C.F., and Taylor, D., 1986. Identification and antibiotic activity of fatty acids in dermal secretions of Plethodon cinereus. American midland naturalist, 115 (1), 198–200.
  • Ritchie, J.M., 1980. Tetrodotoxin and saxitoxin, and the sodium channels of excitable tissue. Trends in Pharmacological sciences, 1 (2), 275–279.
  • Roseghini, M., et al., 1989. Biogenic amines and active peptides in extracts of the skin of thirty-two European amphibian species. Comparative biochemistry and physiology part C: Comparative pharmacology, 94 (2), 455–460.
  • Roseghini, M., et al., 1986. Indole-, imidazole-and phenyl-alkylamines in the skin of one hundred and forty American amphibian species other than bufonids. Comparative biochemistry and physiology part C: Comparative pharmacology, 85 (1), 139–147.
  • Sala, O.E., et al., 2000. Global biodiversity scenarios for the year 2100. Science, 287 (5459), 1770–1774.
  • Sanchez, E., et al., 2019. The conspicuous postmetamorphic coloration of fire salamanders, but not their toxicity, is affected by larval background albedo. Journal of experimental zoology part B: Molecular and developmental evolution, 332 (1-2), 26–35.
  • Sawaya, P., 1940. Sobre o veneno das glandulas cutaneas, a secreção e o coração de Siphonops annulatus. Boletins da Faculdade de philosophia, sciencias e letras, Universidade de São Paulo. Zoologia, 4 (4), 207.
  • Schöpf, C., 1961. Structure of salamander alkaloids. Experientia, 17 (7), 285–295.
  • Schöpf, C., et al., 1950. Zür Konstitution des Samandarins. Chemische berichte, 83 (4), 372–390.
  • Schöpf, C., and Braun, W., 1934. Über Samandarin, das Hauptalkaloid im Gift des Feuer‐und Alpensalamanders. Justus Liebig's annalen der chemie, 514 (1), 69–136.
  • Schöpf, C., Klein, D., and Hofmann, E., 1954. Die Darstellung von Dehydrierungs-Kohlen wassertoffen aus Samandiol. Chemische berichte, 87 (11), 1638–1660.
  • Schöpf, C., and Koch, K., 1942. Über Samandaron und Samandaridin, Nebenalkaloide im Gift des Feuer – und Alpensalamanders. Justus liebig's annalen der chemie, 552 (1), 37–61.
  • Schöpf, C., and Müller, O.W., 1960. Cycloneosamandion, ein neues Nebenalkaloid aus dem Feuersalamander (Salamandra Maculosa Laur.). Justus Liebigs annalen der chemie, 633 (1), 127–156.
  • Schwartz, C.A., et al., 2007. Princípios bioativos da pele de anfíbios: panorama atual e perspectivas. Herpetologia No Brasil, 2, 146–168.
  • Schwartz, E.F., et al., 2003. Skin secretion of Siphonops paulensis (Gymnophiona, Amphibia) forms voltage-dependent ionic channels in lipid membranes. Brazilian journal of medical and biological research, 36 (9), 1279–1282.
  • Servedio, M.R., 2000. The effects of predator learning, forgetting, and recognition errors on the evolution of warning coloration. Evolution, 54 (3), 751–763.
  • Sharon, N., 2006. Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochimica et biophysica acta, 1760 (4), 527–537.
  • Sheafor, B., et al., 2008. Antimicrobial peptide defenses in the salamander, Ambystoma tigrinum, against emerging amphibian pathogens. Journal of wildlife diseases, 44 (2), 226–236.
  • Shimizu, Y., and Kobayashi, M., 1983. Apparent lack of tetrodotoxin biosynthesis in captured Taricha torosa and Taricha granulosa. Chemical and pharmaceutical bulletin, 31 (10), 3625–3631.
  • Shoji, Y., et al., 2001. Electrospray ionization mass spectrometry of tetrodotoxin and its analogs: Liquid chromatography/mass spectrometry, tandem mass spectrometry, and liquid chromatography/tandem mass spectrometry. Analytical biochemistry, 290 (1), 10–17.
  • Simidu, U., et al., 1990. Taxonomy of four marine bacterial strains that produce tetrodotoxin. International journal of systematic bacteriology, 40 (4), 331–336.
  • Skerratt, L.F., et al., 2007. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. ecohealth, 4 (2), 125–134.
  • Smith, H.K., et al., 2018. Skin mucosome activity as an indicator of Batrachochytrium salamandrivorans susceptibility in salamanders. PLoS One, 13 (7), e0199295.
  • Simmaco, M., et al., 1998. Antimicrobial peptides from amphibian skin: What do they tell us? Biopolymers, 47 (6), 435–459.
  • Stokes, A.N., et al., 2015. Otter predation on Taricha granulosa and variation in tetrodotoxin levels with elevation. Northwestern Naturalist, 96 (1), 13–21.
  • Stuart, S.N., et al., 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306 (5702), 1783–1786.
  • Stuhr, E.T., 1936. A toxicological study of the cutaneous secretions of the salamander, Triturus torosos (Rathke). Journal of the American Pharmaceutical Association, 25 (2), 117–119.
  • Sun, J., et al., 2016. Proteomic analysis of the skin from Chinese fire-bellied newt and comparison to Chinese giant salamander. Comparative biochemistry and physiology part D: Genomics & proteomics, 19, 71–77.
  • Tecott, L.H., and Abdallah, L., 2003. Mouse genetic approaches to feeding regulation: Serotonin 5-HT 2C receptor mutant mice. CNS spectrums, 8 (8), 578–588.
  • Thangam, E.B., et al., 2018. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: The hunt for new therapeutic targets. Frontiers in immunology, 9, 1873.
  • Toledo, R.C., and Jared, C., 1995. Cutaneous granular glands and amphibian venoms. Comparative biochemistry and physiology part A: Physiology, 111 (1), 1–29.
  • Torres-Sánchez, M., et al., 2019. Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. DNA research, 26 (1), 13–20.
  • Tsuruda, K., et al., 2002. Secretory glands of tetrodotoxin in the skin of the Japanese newt Cynops pyrrhogaster. Toxicon, 40 (2), 131–136.
  • Tsuruda, K., Arakawa, O., and Noguchi, T., 2001. Toxicity and toxin profiles of the newt, Cynops pyrrhogaster from western Japan. Journal of natural toxins, 10 (2), 79–89.
  • Twitty, V.C., 1937. Experiments on the phenomenon of paralysis produced by a toxin occurring in Triturus embryos. Journal of experimental zoology, 76 (1), 67–104.
  • Twitty, V.C., 1964. Taricha rivularis (Twitty) red-bellied newt. Catalogue of American amphibians and reptiles, 68, 9.1–9.2.
  • Twitty, V.C., and Elliot, H.A., 1934. The relative grwoth of the amphibian eye, studied by means of transplantation. The Journal of experimental zoology, 68 (2), 247–291.
  • Vaelli, P.M., et al., 2020. The skin microbiome facilitates adaptive tetrodotoxin production in poisonous newts. eLife, 9, e53898.
  • Vences, M., et al., 2014. Nuclear and mitochondrial multilocus phylogeny and survey of alkaloid content in true salamanders of the genus Salamandra (Salamandridae). Molecular phylogenetics and evolution, 73 (1), 208–216.
  • Vredenburg, V.T., et al., 2010. Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proceedings of the national academy of sciences of the United States of America, 107 (21), 9689–9694.
  • Wake, M. H., 2002. Caecilians. In: T. Halliday and K. Adler, eds. The new encyclopedia of reptiles and amphibians. Oxford, United Kingdom: Oxford University Press, 38–41.
  • Wake, M. H., 2003. The osteology of caecilians. In: H. Heatwole, ed. Amphibian biology. Chipping Norton - New South Wales: Surrey Beatty and Sons, 1809–1876.
  • Wakely, J.F., et al., 1966. The occurrence of tetrodotoxin (tarichatoxin) in amphibia and the distribution of the toxin in the organs of newts (Taricha). Toxicon, 3 (3), 195–203.
  • Walker, A.A., et al., 2020. Deadly proteomes: a practical guide to proteotranscriptomics of animal venoms. Proteomics, 20 (17-18), e1900324.
  • Wang, L., et al., 2013. Molecular characterization, tissue distribution and functional analysis of macrophage migration inhibitory factor protein (MIF) in Chinese giant salamanders Andrias davidianus. Developmental and comparative immunology, 39 (3), 161–168.
  • Wang, X.J., et al., 2008. Toxin-screening and identification of bacteria isolated from highly toxic marine gastropod Nassarius semiplicatus. Toxicon, 52 (1), 55–61.
  • Webb, J.E., Wallwork, J.A., and Elgood, J.H., 1981. Caecilians. Guide to living amphibians, 22(17), 59–71.
  • Wilkinson, M., 2012. Caecilians. Current biology, 22 (17), R668–R669.
  • Wilkinson, M., et al., 2008. One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona). Biology letters, 4 (4), 358–361.
  • Williams, B.L., 2010. Behavioral and chemical ecology of marine organisms with respect to tetrodotoxin. Marine drugs, 8 (3), 381–398.
  • Wölfel, E., et al., 1961. Die Konstitution und Konfiguration des Samandarins. Chemische berichte, 94 (9), 2361–2373.
  • Wollina, U., Wevers, A., and Mahrle, G., 1991. Localization of calmodulin in epidermis and skin glands: A comparative immunohistological investigation in different vertebrate species. Acta histochemica, 90 (2), 135–140.
  • Woodhams, D.C., et al., 2014. Interacting symbionts and immunity in the amphibian skin mucosome predict disease risk and probiotic effectiveness. PLoS One, 9 (4), e96375.
  • Woodhams, D.C., et al., 2006. Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses. Journal of Wildlife Diseases, 42 (2), 207–218.
  • Xie, H., and He, S.-H., 2005. Roles of histamine and its receptors in allergic and inflammatory bowel diseases. World Journal of gastroenterology, 11 (19), 2851–2857.
  • Yang, G., et al., 2010. A novel TTX-producing Aeromonas isolated from the ovary of Takifugu obscurus. Toxicon, 56 (3), 324–329.
  • Yang, H., et al., 2017a. Analysis on the expression and function of a chicken-type and goose-type lysozymes in Chinese giant salamanders Andrias davidianus. Developmental and comparative immunology, 72, 69–78.
  • Yang, H., et al., 2017b. Identification of the first cathelicidin gene from skin of Chinese giant salamanders Andrias davidianus with its potent antimicrobial activity. Developmental and comparative immunology, 77, 141–149.
  • Yap, T.A., et al., 2015. Averting a North American biodiversity crisis. Science, 349 (6247), 481–482.
  • Yasumoto, T., et al., 1989. Interspecies distribution and biogenetic origin of tetrodotoxin and its derivatives. Pure and Applied chemistry, 61 (3), 505–508.
  • Yasumoto, T., et al., 1988. New tetrodotoxin analogues from the newt Cynops ensicauda. Journal of the American Chemical society, 110 (7), 2344–2345.
  • Yotsu-Yamashita, M., et al., 2012. Variability of tetrodotoxin and of its analogues in the red-spotted newt, Notophthalmus viridescens (Amphibia: Urodela: Salamandridae). Toxicon, 59 (2), 257–264.
  • Yotsu-Yamashita, M., and Mebs, D., 2001. The levels of tetrodotoxin and its analogue 6-epitetrodotoxin in the red-spotted newt, Notophthalmus viridescens. Toxicon:, 39 (8), 1261–1263.
  • Yotsu-Yamashita, M., and Mebs, D., 2003. Occurrence of 11-oxotetrodotoxin in the red-spotted newt, Notophthalmus viridescens, and further studies on the levels of tetrodotoxin and its analogues in the newt’s efts. Toxicon, 41 (7), 893–897.
  • Yotsu-Yamashita, M., et al., 2007. Tetrodotoxin and its analogue 6-epitetrodotoxin in newts (Triturus spp.; Urodela, Salamandridae) from southern Germany. Toxicon, 50 (2), 306–309.
  • Yotsu-Yamashita, M., Toennes, S.W., and Mebs, D., 2017. Tetrodotoxin in Asian newts (Salamandridae). Toxicon, 134, 14–17.
  • Yotsu, M., Endo, A., and Yasumoto, T., 1989. An improved tetrodotoxin analyzer. Agricultural and biological chemistry, 53 (3), 893–895.
  • Yotsu, M., Iorizzi, M., and Yasumoto, T., 1990. Distribution of tetrodotoxin, 6-epitetrodotoxin, and 11-deoxytetrodotoxin in newts. Toxicon, 28 (2), 238–241.
  • Yotsu, M., et al., 1987. Production of tetrodotoxin and its derivatives by Pseudomonas sp. isolated from the skin of a pufferfish. Toxicon, 25 (2), 225–228.
  • Yu, H., et al., 2013. Molecular cloning, sequence analysis and phylogeny of first Caudata G-type lysozyme in axolotl (Ambystoma mexicanum). Zoological science, 30 (11), 938–943.
  • Zalesky, S., 1866. Über das Samandarin. Das Gift der Salamandra maculata. Med Chem Untersuch Hoppe-Seyler, 1, 85–116.
  • Zhang, P., et al., 2008. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. Molecular phylogenetics and evolution, 49 (2), 586–597.
  • Zhang, Q., et al., 2017. Molecular cloning, characterization, and expression analysis of Cathepsin A in the Chinese giant salamander Andrias davidianus. Journal of aquatic animal health, 29 (4), 199–207.
  • Zimmer, R.K., et al., 2006. The scent of danger: Tetrodotoxin (TTX) as an olfactory cue of predation risk. Ecology monographs, 74 (6), 585–600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.