1,890
Views
0
CrossRef citations to date
0
Altmetric
Review

Nitric oxide in plants: an insight on redox activity and responses toward abiotic stress signaling

, , & ORCID Icon
Article: 2298053 | Received 19 Oct 2023, Accepted 16 Dec 2023, Published online: 08 Jan 2024

References

  • Khator K, Shekhawat GS. Cd- and Cu-induced phytotoxicity on 2–3 leaf stage of cyamopsis tetragonoloba and its regulation by nitrate reductase and ROS quenching enzyme. Acta Physiol Plant. 2020;42(7):120. doi:10.1007/s11738-020-03105-0.
  • Khator K, Saxena I, Shekhawat GS. Nitric oxide induced cd tolerance and phytoremediation potential of B. juncea by the modulation of antioxidant defense system and ROS detoxification. BioMetals. 2020;10(1):1–16. doi:10.1007/s10534-020-00259-9.
  • Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abiotic stress-induced programmed cell death in plants. Front Plant Sci. 2015;6:1–16. doi:10.3389/fpls.2015.00069.
  • Fancy NN, Bahlmann AK, Loake GJ. Nitric oxide function in plant abiotic stress. Plant, Cell & Environ. 2017;40(4):462–472. doi:10.1111/pce.12707.
  • Khator K, Shekhawat GS. Regulatory role of thiols and proline in mitigation of Cu induced phytotoxicity in seven day’s old hydroponically acclimatized seedling of cyamopsis tetragonoloba. Biotech Today Int J Biol Sci. 2018;8(1):48–57. doi:10.5958/2322-0996.2018.00007.8.
  • Khator K, Mahawar L, Shekhawat GS. NaCl induced oxidative stress in legume crops of Indian thar desert: an insight in the cytoprotective role of HO1, NO and antioxidants. Physiol Mol Biol Plants. 2019;26(1):51–62. doi:10.1007/s12298-019-00728-7.
  • Siddiqui MH, Al-Whaibi MH, Basalah M. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma. 2011;248(3):447–455. doi:10.1007/s00709-010-0206-9.
  • Saxena I, Shekhawat GS. Nitric oxide (NO) in alleviation of heavy metal induced phytotoxicity and its role in protein nitration. Nitric Oxide. 2013;32:13–20. doi:10.1016/j.niox.2013.03.004.
  • Stamler JS, Singel DJ, Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Sci. 1992;258(5090):1898–1902. doi:10.1126/science.1281928.
  • Neill SJ, Desikan R, Hancock JT. Nitric oxide signalling in plants. New Phytol. 2003;159(1):11–35. doi:10.1046/j.1469-8137.2003.00804.x.
  • Toledo JC, Augusto O. Connecting the chemical and biological properties of nitric oxide. Chem Res Toxicol. 2012;25(5):975–989. doi:10.1021/tx300042g.
  • Corpas FJ, Leterrier M, Valderrama R, Airaki M, Chaki M, Palma JM, Barroso JB. Nitric oxide imbalance provokes a nitrosative response in plants under abiotic stress. Plant Sci. 2011;181(5):604–611. doi:10.1016/j.plantsci.2011.04.005.
  • Wink DA, Miranda KM, Espey MG, Pluta RM, Hewett SJ, Colton C, Vitek M, Feelisch M, Grisham MB. Mechanisms of the antioxidant effects of nitric oxide. Antioxid Redox Signal. 2001;3(2):203–213. doi:10.1089/152308601300185179.
  • Lam MA, Pattison DI, Bottle SE, Keddie DJ, Davies MJ. Nitric oxide and nitroxides can act as efficient scavengers of protein-derived free radicals. Chem Res Toxicol. 2008;21(11):2111–2119. doi:10.1021/tx800183t.
  • Astier J, Gross I, Durner J. Nitric oxide production in plants: an update. J Exp Bot. 2017;69(14):3401–3411. doi:10.1093/jxb/erx420.
  • Jeandroz S, Wipf D, Stuehr DJ, Lamattina L, Melkonian M, Tian Z, Zhu Y, Carpenter EJ, Wong GK, Wendehenne D. Occurrence, structure, and evolution of nitric oxide synthase–like proteins in the plant kingdom. Sci Signal. 2016;9(417):re2–re2. doi:10.1126/scisignal.aad4403.
  • Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L. Characterization of a nitric oxide synthase from the plant kingdom: NO generation from the green alga Ostreococcus tauri is light irradiance and growth phase dependent. Plant Cell. 2010;22(11):3816–3830. doi:10.1105/tpc.109.073510.
  • Moreau M, Lee GI, Wang Y, Crane BR, Klessig DF. AtNOS/AtNOA1 is a functional Arabidopsis thalianacGTPase and not a nitric-oxide synthase. J Biol Chem. 2008;283(47):32957–32967. doi:10.1074/jbc.M804838200.
  • Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett. 2000;468(1):89–92. doi:10.1016/S0014-5793(00)01203-5.
  • Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ. ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant Journal. 2006;45(1):113–122. doi:10.1111/j.1365-313X.2005.02615.x.
  • Sang J, Jiang M, Lin F, Xu S, Zhang A, Tan M. Nitric oxide reduces hydrogen peroxide accumulation involved in water stress induced subcellular antioxidant defense in maize plants. J Integ Plant Biol. 2008;50(2):231–243. doi:10.1111/j.1744-7909.2007.00594.x.
  • Gupta KJ, Fernie AR, Kaiser WM, van Dongen JT. On the origins of nitric oxide. Trends Plant Sci. 2011;16(3):160–168. doi:10.1016/j.tplants.2010.11.007.
  • Rockel P, Strube F, Rockel A, Wildt J, Kaiser WM. Regulation of nitric oxide (NO) production by plant nitrate reductase in vivo and in vitro. J Exp Bot. 2002;53(366):103–110. doi:10.1093/jexbot/53.366.103.
  • Igamberdiev AU, Ratcliffe RG, Gupta KJ. Plant mitochondria: source and target for nitric oxide. Mitochondrion. 2014;19:329–333. doi:10.1016/j.mito.2014.02.003.
  • Corpas FJ, Chaki M, Fernandez-Ocana A, Valderrama R, Palma JM, Carreras A, Begara-Morales JC, Airaki M, Del Rio LA, Barroso JB. Metabolism of reactive nitrogen species in pea plants under abiotic stress conditions. Plant Cell Physiol. 2008;49(11):1711–1722. doi:10.1093/pcp/pcn144.
  • Godmer BL, Doel JJ, Sapkota GP, Blake DR, Stevens CR, Eisenthal R, Harrison R. Reduction of nitrite to nitric oxide catalyzed by xanthine oxidoreductase. J Biol Chem. 2000;275(11):7757–7763. doi:10.1074/jbc.275.11.7757.
  • Wang SH, Zhang H, Jiang SJ, Zhang L, He QY, He HQ. Effects of the nitric oxide donor sodium nitroprusside on antioxidant enzymes in wheat seedling roots under nickel stress. Russ J Plant Physiol. 2010b;57(6):833–839. doi:10.1134/S1021443710060129.
  • Tun NN, Santa-Catarina C, Begum T, Silveira V, Handro W, Floh EI, Scherer GF. Polyamines induce rapid biosynthesis of nitric oxide (NO) in Arabidopsis thaliana seedlings. Plant Cell Physiol. 2006;47(3):346–354. doi:10.1093/pcp/pci252.
  • Vetrovsky P, Stoclet JC, Entlicher G. Possible mechanism of nitric oxide production from N(G)-hydroxy-L-arginine or hydroxylamine by superoxide ion. Int J Biochem Cell Biol. 1996;28(12):1311–1318. doi:10.1016/S1357-2725(96)00089-1.
  • Wendehenne D, Pugin A, Klessig D, Durner J. Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 2001;6(4):177–183. doi:10.1016/S1360-1385(01)01893-3.
  • Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues. Plant Cell. 2004;16(2):332–341. doi:10.1105/tpc.017822.
  • Sehrawat A, Deswal R. S-nitrosylation analysis in Brassica juncea apoplast highlights the importance of nitric oxide in cold-stress signaling. J Proteome Res. 2014;13(5):2599–2619. doi:10.1021/pr500082u.
  • Khator K, Shekhawat GS. Nitric oxide mitigates salt-induced oxidative stress in Brassica juncea seedlings by regulating ROS metabolism and antioxidant defense system. 3 Biotech. 2020;10(11):1–12. doi:10.1007/s13205-020-02493-x.
  • Kwon E, Feechan A, Yun BW, Hwang BH, Pallas JA, Kang JG, Loake GJ. AtGSNOR1 function is required for multiple developmental programs in arabidopsis. Planta. 2012;236(3):887–900. doi:10.1007/s00425-012-1697-8.
  • Xu S, Guerra D, Lee U, Vierling E. S-nitrosoglutathione reductases are low-copy number, cysteine-rich proteins in plants that control multiple developmental and defense responses in Arabidopsis. Front Plant Sci. 2013;4:430. doi:10.3389/fpls.2013.00430.
  • Hasanuzzaman M, Oku H, Nahar K, Bhuyan B, Mahmud JA, Baluska F, Fujita M. Nitric oxide-induced salt stress tolerance in plants: ROS metabolism, signaling, and molecular interactions. Plant Biotechnol Rep. 2018;12(2):77–92. doi:10.1007/s11816-018-0480-0.
  • Wulff A, Oliveira HC, Saviani EE, Salgado I. Nitrite reduction and superoxide-dependent nitric oxide degradation by Arabidopsis mitochondria: influence of external NAD(P)H dehydrogenases and alternative oxidase in the control of nitric oxide levels. Nitric Oxide. 2009;21(2):132–139. doi:10.1016/j.niox.2009.06.003.
  • Igamberdiev AU, Baron K, Manac’h-Little N, Stoimenova M, Hill RD. The haemoglobin/nitric oxide cycle: involvement in flooding stress and effects on hormone signalling. Ann Bot. 2005;96(4):557–564. doi:10.1093/aob/mci210.
  • Frungillo L, Skelly MJ, Loake GJ, Spoel SH, Salgado I. S-nitrosothiols regulate nitric oxide production and storage in plants through the nitrogen assimilation pathway. Nat Commun. 2014;5(1):5401. doi:10.1038/ncomms6401.
  • Leitner M, Vandelle E, Gaupels F, Bellin D, Delledonne M. NO signals in the haze. Nitric oxide signalling in plant defence. Curr Opin Plant Biol. 2009;12(4):451–458. doi:10.1016/j.pbi.2009.05.012.
  • Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta. 1999;1411(2–3):290–309. doi:10.1016/S0005-2728(99)00021-3.
  • Radi R. Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A. 2004;101(12):4003–4008. doi:10.1073/pnas.0307446101.
  • Yu M, Lamattina L, Spoel SH, Loake GJ. Nitric oxide function in plant biology: a redox cue in deconvolution. New Phytol. 2014;202(4):1142–1156. doi:10.1111/nph.12739.
  • Wei L, Zhang M, Wei S, Zhang J, Wang C, Liao W. Roles of nitric oxide in heavy metal stress in plants: cross-talk with phytohormones and protein S-nitrosylation. Environ Pollut. 2020;259:113943. doi:10.1016/j.envpol.2020.113943.
  • Abat JK, Deswal R. Differential modulation of S-nitrosoproteome of brassica juncea by low temperature: change in S-nitrosylation of Rubisco is responsible for the in activation of its carboxylase activity. Proteomics. 2009;9(18):4368–4380. doi:10.1002/pmic.200800985.
  • Begara-Morales JC, Sanchez-Calvo B, Chaki M, Valderrama R, Mata-Perez C, Lopez-Jaramillo J, Padilla MN, Carreras A, Corpas FJ, Barroso JB. Dual regulation of cytosolic ascorbate peroxidase (APX) by tyrosine nitration and S-nitrosylation. J Exp Bot. 2014;65(2):527–538. doi:10.1093/jxb/ert396.
  • Elviri L, Speroni F, Careri M, Mangia A, di Toppi LS, Zottini M. Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry. J Chromatogr A. 2010;1217(25):4120–4126. doi:10.1016/j.chroma.2010.02.013.
  • Wang D, Liu Y, Tan X, Liu H, Zeng G, Hu X, Jian H, Gu Y. Effect of exogenous nitric oxide on antioxidative system and S-nitrosylation in leaves of Boehmeria nivea (L.) Gaud under cadmium stress. Environ Sci Pollut Res. 2015a;22(5):3489–3497. doi:10.1007/s11356-014-3581-5.
  • Zhan N, Wang C, Chen L, Yang H, Feng J, Gong X, Ren B, Wu R, Mu J, Li Y, et al. S-nitrosylation targets GSNO reductase for selective autophagy during hypoxia responses in plants. Mol Cell. 2018;71(1):142–154. doi:10.1016/j.molcel.2018.05.024.
  • Saito S, Yamamoto-Katou A, Yoshioka H, Doke N, Kawakita K. Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol. 2006;47(6):689–697. doi:10.1093/pcp/pcj038.
  • Lipka E, Müller S. Nitrosative stress triggers microtubule reorganization in Arabidopsis thaliana. J Exp Bot. 2014;65(15):4177–4189. doi:10.1093/jxb/eru194.
  • Arasimowicz M, Floryszak-Wieczorek J. Nitric oxide as a bioactive signalling molecule in plant stress responses. Plant Sci. 2007;172(5):876–887. doi:10.1016/j.plantsci.2007.02.005.
  • Kovacs I, Lindermayr C. Nitric oxide-based protein modification: formation and site-specificity of protein S-nitrosylation. Front Plant Sci. 2013;4:137. doi:10.3389/fpls.2013.00137.
  • Vitor SC, Duarte GT, Saviani EE, Vincentz MGA, Oliveira HC, Salgado I. Nitrate reductase is required for the transcriptional modulation and bactericidal activity of nitric oxide during the defense response of Arabidopsis thaliana against Pseudomonas syringae. Planta. 2013;238(3):475–486. doi:10.1007/s00425-013-1906-0.
  • Polaveri A, Molesini B, Pezzotti M, Buonaurio R, Marte M, Delledonne M. Nitric oxide-mediated transcriptional changes in Arabidopsis thaliana. Mol Plant–Microbe Interact. 2003;16(12):1094–1105. doi:10.1094/MPMI.2003.16.12.1094.
  • Parani MR, Weirich R, Myers H, Leaman B, Smith DW, Leaman DW, Goldman SL. Microarray analysis of nitric oxide responsive transcripts in arabidopsis. Plant Biotechnol J. 2004;2(4):359–366. doi:10.1111/j.1467-7652.2004.00085.x.
  • Nabi RBS, Tayade R, Hussain A, Kulkarni KP, Imran QM, Mun BG, Yun BW. Nitric oxide regulates plant responses to drought, salinity, and heavy metal stress. Environ Exp Bot. 2019;161:120–133. doi:10.1016/j.envexpbot.2019.02.003.
  • Bose J, Munns R, Shabala S, Gilliham M, Pogson B, Tyerman SD. Chloroplast function and ion regulation in plants growing on saline soils: lessons from halophytes. J Exp Bot. 2017;68(12):3129–3143. doi:10.1093/jxb/erx142.
  • Khator K, Shekhawat GS. Nitric oxide improved salt stress tolerance by osmolyte accumulation and activation of antioxidant defense system in seedling of B. juncea (L.) czern. Vegetos Int J Plant Res. 2019;32(4):583–592. doi:10.1007/s42535-019-00071-y.
  • Mahawar L, Khator K, Shekhawat GS. Role of proline in mitigating NaCl induced oxidative stress in eruca sativa Miller: an important oil yielding crop of Indian thar desert. Vegetos Int J Plant Res. 2018b;31(special):55–63. doi:10.5958/2229-4473.2018.00032.0.
  • Konigshofer H, Tromballa HW, Loppert HG. Early events in signaling high-temperature stress in tobacco BY2 cells involve alterations in membrane fluidity and enhanced hydrogen peroxide production. Plant, Cell & Environ. 2008;531(12):1771–1780. doi:10.1111/j.1365-3040.2008.01880.x.
  • Lamattina L, Beligni MV, Garcia-Mata C, Laxalt AM. Method of enhancing the metabolic function and the growing conditions of plants and seeds. US patent US 6242384B1. 2001
  • Chen J, Xiao Q, Wang C, Wang WH, Wu FH, Chen J, He BY, Zhu Z, Ru QM, Zhang LL, et al. Nitric oxide alleviates oxidative stress caused by salt in leaves of a mangrove species,Aegicerascorniculatum. Aquat Bot. 2014;117:41–47. doi:10.1016/j.aquabot.2014.04.004.
  • Fatma M, Masood A, Per TS, Khan NA. Nitric oxide alleviates salt stress inhibited photosynthetic performance by interacting with sulfur assimilation in mustard. Front Plant Sci. 2016;7:521. doi:10.3389/fpls.2016.00521.
  • Gupta P, Srivastava S, Seth CS. 24-epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid. Plant Soil. 2017;411(1–2):483–498. doi:10.1007/s11104-016-3043-6.
  • Ahmad P, Latef AAA, Hashem A, Abd_allah EF, Gucel S, Tran L-SP. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci. 2016;7:347. doi:10.3389/fpls.2016.00347.
  • Fan H, Guo S, Jiao Y, Zhang R, Li J. Effects of exogenous nitric oxide on growth, active oxygen species metabolism, and photosynthetic characteristics in cucumber seedlings under NaCl stress. Front Agric China. 2007;1(3):308–314. doi:10.1007/s11703-007-0052-5.
  • Egbichi I, Keyster M, Ludidi N. Effect of exogenous application of nitric oxide on salt stress responses of soybean. S Afri J Bot. 2014;90:131–136. doi:10.1016/j.sajb.2013.11.002.
  • Gadelha CG, Miranda RS, Alencar NLM, Costa JH, Prisco JT, Gomes Filhoa E. Exogenous nitric oxide improves salt tolerance during establishment of jatropha curcas seedlings by ameliorating oxidative damage and toxic ion accumulation. J Plant Physiol. 2017;212:69–79. doi:10.1016/j.jplph.2017.02.005.
  • Guo Y, Tian Z, Yan D, Zhang J, Qin P. Effects of nitric oxide on salt stress tolerance in Kosteletzkya virginica. Life Sci J. 2009;6:67–75.
  • Kopyra M, Gwozdz EA. Nitric oxide stimulates seed germination and counteracts the inhibitory effect of heavy metals and salinity on root growth of Lupinus luteus. Plant Physiol Biochem. 2003;41(11–12):1011–1017. doi:10.1016/j.plaphy.2003.09.003.
  • Wu X, Zhu W, Zhang H, Ding H, Zhang HJ. Exogenous nitric oxide protects against salt-induced oxidative stress in the leaves from two genotypes of tomato (Lycopersicom esculentum mill.). Acta Physiol Plant. 2011;33(4):1199–1209. doi:10.1007/s11738-010-0648-x.
  • Yadu S, Dewangan TL, Chandrakar V, Keshavkant S. Imperative roles of salicylic acid and nitric oxide in improving salinity tolerance in Pisum sativum L. Physiol Mol Biol Plants. 2017;23(1):43–58. doi:10.1007/s12298-016-0394-7.
  • Uchida A, Jagendorf AT, Hibino T, Takabe T, Takabe T. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice. Plant Sci. 2002;163(3):515–523. doi:10.1016/S0168-9452(02)00159-0.
  • Arora D, Bhatla SC. Melatonin and nitric oxide regulate sunflower seedling growth under salt stress accompanying differential expression of Cu/Zn SOD and mn SOD. Free Radical Bio Med. 2017;106:315–328. doi:10.1016/j.freeradbiomed.2017.02.042.
  • Manai J, Kalai T, Gouia H, Corpas FJ. Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. J Soil Sci Plant Nutr. 2014;14(ahead):0–0. doi:10.4067/S0718-95162014005000034.
  • Tian X, He M, Wang Z, Zhang J, Song Y, He Z, Dong Y. Application of nitric oxide and calcium nitrate enhances tolerance of wheat seedlings to salt stress. Plant Growth Regul. 2015;77(3):343–356. doi:10.1007/s10725-015-0069-3.
  • Ali Q, Daud MK, Haider MZ, Ali S, Aslam N, Noman A, Iqbal N, Shahzad F, Rizwan M, Deeba F, et al. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol Biochem. 2017;119:50–58. doi:10.1016/j.plaphy.2017.08.010.
  • Sehar Z, Masood A, Khan NA. Nitric oxide reverses glucose-mediated photosynthetic repression in wheat (Triticum aestivum L.) under salt stress. Environ Exp Bot. 2019;161:277–289. doi:10.1016/j.envexpbot.2019.01.010.
  • Shen ZJ, Chen J, Ghoto K, Hu WJ, Gao GF, Luo MR, Li Z, Simon M, Zhu XY, Zheng HL. Proteomic analysis on mangrove plant avicennia marina leaves reveals nitric oxide enhances the salt tolerance by up-regulating photosynthetic and energy metabolic protein expression. Tree Physiol. 2018;38:1605–1622. doi:10.1093/treephys/tpy058.
  • Zhang A, Jiang M, Zhang J, Ding H, Xu S, Hu X, Tan M. Nitric oxide induced by hydrogen peroxide mediates abscisic acid-induced activation of the mitogen-activated protein kinase cascade involved in antioxidant defense in maize leaves. New Phytol. 2007;175(1):36–50. doi:10.1111/j.1469-8137.2007.02071.x.
  • Zhao MG, Tian QY, Zhang WH. Nitric oxide synthase-dependent nitric oxide production is associated with salt tolerance in Arabidopsis. Plant Physiol. 2007;144(1):206–217. doi:10.1104/pp.107.096842.
  • Zhao L, Zhang F, Guo J, Yang Y, Li B, Zhang L. Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed. Plant Physiol. 2004;134(2):849–857. doi:10.1104/pp.103.030023.
  • Marvasi M. Potential use and perspectives of nitric oxide donors in agriculture. J Sci Food Agric. 2017;97(4):1065–1072. doi:10.1002/jsfa.8117.
  • Wu P, Shou H, Xu G, Lian X. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol. 2013;16(2):205–212. doi:10.1016/j.pbi.2013.03.002.
  • Fatma M, Khan NA. Nitric oxide protects photosynthetic capacity inhibition by salinity in Indian mustard. J of Func and Env Bot. 2014;4(2):106–116. doi:10.5958/2231-1750.2014.00009.2.
  • Sheokand S, Kumari A, Sawhney V. Effect of nitric oxide and putrescine on antioxidative responses under NaCl stress in chickpea plants. Physiol Mol Biol Plants. 2008;14(4):355–362. doi:10.1007/s12298-008-0034-y.
  • Tanou G, Job C, Rajjou L, Arc E, Belghazi M, Diamantidis G, Molassiotis A, Job D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant Journal. 2009;60(5):795–804. doi:10.1111/j.1365-313X.2009.04000.x.
  • Yan F, Wei H, Li W, Liu Z, Tang S, Chen L, Ding C, Jiang Y, Ding Y, Li G, et al. Melatonin improves K+ and Na+ homeostasis in rice under salt stress by mediated nitric oxide. Ecotoxicol Environ Saf. 2020;206:111358. doi:10.1016/j.ecoenv.2020.111358.
  • Ghorbani A, Pishkar L, Saravi KV, Chen M. Melatonin-mediated endogenous nitric oxide coordinately boosts stability through proline and nitrogen metabolism, antioxidant capacity, and Na+/K+ transporters in tomato under NaCl stress. Front Plant Sci. 2023;14:1135943. doi:10.3389/fpls.2023.1135943.
  • Zheng C, Jiang D, Liu F, Dai T, Liu W, Jing Q, Cao W. Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environ Exp Bot. 2009;67(1):222–227. doi:10.1016/j.envexpbot.2009.05.002.
  • Sheokand S, Bhankar V, Sawhney V. Ameliorative effect of exogenous nitric oxide on oxidative metabolism in NaCl treated chickpea plants. Braz J Plant Physiol. 2010;22(2):81–90. doi:10.1590/S1677-04202010000200002.
  • Hasanuzzaman M, Hossain M Anwar and Fujita M. (2011). Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnol Rep, 5(4), 353–365. 10.1007/s11816-011-0189-9
  • Tanou G, Filippou P, Belghazi M, Job D, Diamantidis G, Fotopoulos V, Molassiotis A. Oxidative and nitrosative-based signalling and associated post-translational modifications orchestrate the acclimation of citrus plants to salinity stress. Plant Journal. 2012;72(4):585–599. doi:10.1111/j.1365-313X.2012.05100.x.
  • Wawer I, Bucholc M, Astier J, Anielska-Mazur A, Dahan J, Kulik A, Wysłouch-Cieszynska A, Zareba-Kozioł M, Krzywinska E, Dadlez M, et al. Regulation of nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity. Biochem J. 2010;429(1):73–83. doi:10.1042/BJ20100492.
  • Fares A, Rossignol M, Peltier JB. Proteomics investigation of endogenous-nitrosylation in arabidopsis. Biochem Biophys Res Commun. 2011;416(3–4):331–336. doi:10.1016/j.bbrc.2011.11.036.
  • Camejo D, Romero-Puertas MDC, Rodriguez-Serrano M, Sandalio LM, Lazaro JJ, Jimenez A, Sevilla F. Salinity-induced changes in S-nitrosylation of pea mitochondrial proteins. J Proteomics. 2013;79:87–99. doi:10.1016/j.jprot.2012.12.003.
  • Ziogas V, Tanou G, Filippou P, Diamantidis G, Vasilakakis M, Fotopoulos V, Molassiotis A. Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiol Biochem. 2013;68:118–126. doi:10.1016/j.plaphy.2013.04.004.
  • Shi H, Chen L, Ye T, Liu X, Ding K, Chan Z. Modulation of auxin content in Arabidopsis confers improved drought stress resistance. Plant Physiol Biochem. 2014;82:209–217. doi:10.1016/j.plaphy.2014.06.008.
  • Garcıia-Mata C, Lamattina L. Nitric oxide and abscisic acid crosstalk in guard cells. Plant Physiol. 2002;128(3):790–792. doi:10.1104/pp.011020.
  • Desikan R, Griffiths R, Hancock J, Neill S. A new role for an old enzyme: nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 2002;99(25):16314–16318. doi:10.1073/pnas.252461999.
  • Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings. Aus J Plant Physiol. 2001;28(10):1055–1061. doi:10.1071/PP00143.
  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK. Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci U S A. 2015b;112(2):613–618. doi:10.1073/pnas.1423481112.
  • Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubis J. Interaction between polyamine and nitric oxide signalling in adaptive responses to drought in cucumber. J Plant Growth Regul. 2009;28(2):177–186. doi:10.1007/s00344-009-9086-7.
  • Lu S, Su W, Li H, Guo Z. Abscisic acid improves drought tolerance of triploid Bermuda grass and involves H2O2- and NO-induced antioxidant enzyme activities. Plant Physiol Biochem. 2009;47(2):132–138. doi:10.1016/j.plaphy.2008.10.006.
  • Filippou P, Bouchagier P, Skotti E, Fotopoulos V. Proline and reactive oxygen/nitrogen species metabolism is involved in the tolerant response of the invasive plant species Ailanthus altissima to drought and salinity. Environ Exp Bot. 2014;97:110. doi:10.1016/j.envexpbot.2013.09.010.
  • Bai X, Yang L, Tian M, Chen J, Shi J, Yang Y, Hu X, Newbigin E. Nitric oxide enhances desiccation tolerance of recalcitrant Antiaris toxicaria seeds via protein S-nitrosylation and carbonylation. PLoS ONE. 2011;6(6):e20714. doi:10.1371/journal.pone.0020714.
  • Tavares CP, Vernal J, Delena RA, Lamattina L, Cassia R, Terenzi H. S-nitrosylation influences the structure and DNA binding activity of AtMYB30 transcription factor from Arabidopsis thaliana. Biochim Biophys Acta. 2014;1844(4):810–817. doi:10.1016/j.bbapap.2014.02.015.
  • Mahawar L, Kumar R, Shekhawat GS. Evaluation of heme oxygenase 1 (HO 1) in cd and Ni induced cytotoxicity and crosstalk with ROS quenching enzymes in two to four leaf stage seedlings of Vigna radiata. Protoplasma. 2018a;255(2):527–545. doi:10.1007/s00709-017-1166-0.
  • Xiong J, Fu G, Tao L, Zhu C. Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch Biochem Biophys. 2010;497(1–2):13–20. doi:10.1016/j.abb.2010.02.014.
  • Zhou T, Zheng LP, Yuan HY, Yuan YF, Wang JW. The nitric oxide production and NADPH-diaphorase activity in root tips of Vicia faba L. under copper toxicity. Plant Omics J. 2012;5:115–121.
  • Kazemi N, Khavari-Nejad RA, Fahimi H, Saadatmand S, Nejad-Sattari T. Effects of exogenous salicylic acid and nitric oxide on lipid peroxidation and antioxidant enzyme activities in leaves of brassica napus L. under nickel stress. Sci Hortic (Amsterdam). 2010;126(3):402–407. doi:10.1016/j.scienta.2010.07.037.
  • Abdel-Kader DZE. Role of nitric oxide, glutathione and sulfhydryl groups in zinc homeostasis in plants. Am J Plant Physiol. 2007;2(2):59–75. doi:10.3923/ajpp.2007.59.75.
  • Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK. Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide. 2009;20(4):289–297. doi:10.1016/j.niox.2009.02.004.
  • Yang LT, Qi YP, Chen LS, Sang W, Lin XJ, Wu YL, Yang CJ. Nitric oxide protects sour pummelo (Citrus grandis) seedlings against aluminum-induced inhibition of growth and photosynthesis. Environ Exp Bot. 2012;82:1–13. doi:10.1016/j.envexpbot.2012.03.004.
  • Sun T, Wang Y, Wang M, Li T, Zhou Y, Wang X, Wei S, He G, Yang G. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.). BMC Plant Biol. 2015;15(1):1–17. doi:10.1186/s12870-015-0657-4.
  • Singh AP, Dixit G, Kumar A, Mishra S, Singh PK, Dwivedi S, Trivedi PK, Chakrabarty D, Mallick S, Pandey V, et al. Nitric oxide alleviated arsenic toxicity by modulation of antioxidants and thiol metabolism in rice (Oryza sativa L.). Front Plant Sci. 2016;6:1–14. doi:10.3389/fpls.2015.01272.
  • Singh PK, Indoliya Y, Chauhan AS, Singh SP, Singh AP, Dwivedi S, Tripathi RD, Chakrabarty D. Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Sci Rep. 2017;7(1):1–13. doi:10.1038/s41598-017-03923-2.
  • Farnese FS, De Oliveira JA, Gusman GS, Leão GA, Ribeiro C, Siman LI, Cambraia J. Plant responses to arsenic: the role of nitric oxide. Water Air Soil Pollut. 2013;224(9):1660. doi:10.1007/s11270-013-1660-8.
  • Ismail GSM. Protective role of nitric oxide against arsenic-induced damages in germinating mung bean seeds. Acta Physiol Plant. 2012;34(4):1303–1311. doi:10.1007/s11738-012-0927-9.
  • Mohamed HI, Latif HH, Hanafy RS. Einfluss von Stickoxidanwendung auf einige biochemische Aspekte, endogene Hormone, Mineralien und Phenolverbindungen von Vicia faba-Pflanzen, die unter Arsenbelastung heranwachsen. Gesunde Pflanzen. 2016;68(2):99–107. doi:10.1007/s10343-016-0363-7.
  • Hasanuzzaman M, Fujita M. Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicol. 2013;22(3):584–596. doi:10.1007/s10646-013-1050-4.
  • Dong Y, Chen W, Xu L, Kong J, Liu S, He Z. Nitric oxide can induce tolerance to oxidative stress of peanut seedlings under cadmium toxicity. Plant Growth Regul. 2016;79(1):19–28. doi:10.1007/s10725-015-0105-3.
  • Verma K, Mehta SK, Shekhawat GS. Nitric oxide (NO) counteracts cadmium induced cytotoxic processes mediated by reactive oxygen species (ROS) in Brassica juncea: cross-talk between ROS, NO and antioxidant responses. Biometals. 2013;26(2):255–269. doi:10.1007/s10534-013-9608-4.
  • Yu L, Gao R, Qinghua S, Wang X, Wei M, Yang F. Exogenous application of sodium nitroprusside alleviated cadmium induced chlorosis, photosynthesis inhibition and oxidative stress in cucumber. Pak J Bot. 2013;45:813–819.
  • Zhuo Y, Qiu S, Amombo E, Zhu Q, Tang D, Huang M, Han X, Chen L, Wang S, Chen K, et al. Nitric oxide alleviates cadmium toxicity in tall fescue photosystem II on the electron donor side. Environ Exp Bot. 2017;137:110–118. doi:10.1016/j.envexpbot.2017.02.008.
  • Yang L, Ji J, Harris-Shultz KR, Wang H, Wang H, Abd-Allah EF, Luo Y, Hu X. The dynamic changes of the plasma membrane proteins and the protective roles of nitric oxide in rice subjected to heavy metal cadmium stress. Front Plant Sci. 2016;7:1–18. doi:10.3389/fpls.2016.00190.
  • Zhao H, Jin Q, Wang Y, Chu L, Li X, Xu Y. Effects of nitric oxide on alleviating cadmium stress in Typha angustifolia. Plant Growth Regul. 2016;78(2):243–251. doi:10.1007/s10725-015-0089-z.
  • Peto A, Lehotai N, Feigl G, Tugyi N, Ördög A, Gémes K, Tari I, Erdei L, Kolbert Z. Nitric oxide contributes to copper tolerance by influencing ROS metabolism in arabidopsis. Plant Cell Rep. 2013;32(12):1913–1923. doi:10.1007/s00299-013-1503-5.
  • Mostofa MG, Seraj ZI, Fujita M. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma. 2014;251(6):1373–1386. doi:10.1007/s00709-014-0639-7.
  • Bai XY, Dong YJ, Wang QH, Xu LL, Kong J, Liu S. Effects of lead and nitric oxide on photosynthesis, antioxidative ability, and mineral element content of perennial ryegrass. Biol Plant. 2014;59(1):163–170. doi:10.1007/s10535-014-0476-8.
  • Kaur G, Singh HP, Batish DR, Mahajan P, Kohli RK, Rishi V, Chan Z. Exogenous nitric oxide (NO) interferes with lead (pb)- induced toxicity by detoxifying reactive oxygen species in hydroponically grown wheat (Triticum aestivum) roots. PLoS ONE. 2015;10(9):1–18. doi:10.1371/journal.pone.0138713.
  • Corpas FJ, Barroso JB. Lead-induced stress, which triggers the production of nitric oxide (NO) and superoxide anion (O2.−) in Arabidopsis peroxisomes, affects catalase activity. Nitric Oxide. 2017;68:103–110. doi:10.1016/j.niox.2016.12.010.
  • Kolbert Z. Implication of nitric oxide (NO) in excess element-induced morphogenic responses of the root system. Plant Physiol Biochem. 2016;101:149–161. doi:10.1016/j.plaphy.2016.02.003.
  • Gill SS, Hasanuzzaman M, Nahar K, Macovei A, Tuteja N. Importance of nitric oxide in cadmium stress tolerance in crop plants. Plant Physiol Biochem. 2013;63:254–261. doi:10.1016/j.plaphy.2012.12.001.
  • Laspina NV, Groppa MD, Tomaro ML, Benavides MP. Nitric oxide protects sunflower leaves against Cd-induced oxidative stress. Plant Sci. 2005;169(2):323–330. doi:10.1016/j.plantsci.2005.02.007.
  • Xu J, Yin H, Li Y, Liu X. Nitric oxide is associated with long-term zinc tolerance in Solanum nigrum. Plant Physiol. 2010;154(3):1319–1334. doi:10.1104/pp.110.162982.
  • Zhang L, Chen Z, Zhu C. Endogenous nitric oxide mediates alleviation of cadmium toxicity induced by calcium in rice seedlings. J Environ Sci. 2012;24(5):940–948. doi:10.1016/S1001-0742(11)60978-9.
  • Wang YH, Li XC, Zhu-Ge Q, Jiang X, Wang WD, Fang WP, Chen X, Li XH, Wu K. Nitric oxide participates in cold-inhibited Camellia sinensis pollen germination and tube growth partly via cGMP in vitro. PLoS ONE. 2012;7(12):1–11. doi:10.1371/journal.pone.0052436.
  • Shekhawat GS, Verma K, Jana S, Singh K, Teotia P, Prasad A. In vitro biochemical evaluation of cadmium tolerance mechanism in callus and seedlings of Brassica juncea. Protoplasma. 2010;239(1–4):31–38. doi:10.1007/s00709-009-0079-y.
  • Verma K, Shekhawat GS, Sharma A, Mehta SK, Sharma V. Cadmium induced oxidative stress and changes in soluble and ionically bound cell wall peroxidase activities in roots of seedling and 3–4 leaf stage plants of brassica juncea (L.) czern. Plant Cell Rep. 2008;27(7):1261–1269. doi:10.1007/s00299-008-0552-7.
  • He J, Ren Y, Xiulan C, Chen H. Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf. 2014;108:114–119. doi:10.1016/j.ecoenv.2014.05.021.
  • Ortega-Galisteo AP, Rodriguez-Serrano M, Pazmino DM, Gupta DK, Sandalio LM, Romero-Puertas MC. S-nitrosylated proteins in pea (Pisum sativum L.) leaf peroxisomes: changes under abiotic stress. J Exp Bot. 2012;63(5):2089–2103. doi:10.1093/jxb/err414.
  • Yu H, Venkatarangan L, Wishnok JS, Tannenbaum SR. Quantitation of four guanine oxidation products from reaction of DNA with varying doses of peroxynitrite. Chem Res Toxicol. 2005;18(12):1849–1857. doi:10.1021/tx050146h.
  • Cui X, Zhang Y, Chen X, Jin H, Wu X. Effects of exogenous nitric oxide protects tomato plants under copper stress. In: 3rd International Conference on Bioinformatics and Biomedical Engineering-2009 (ICBBE 2009). 2009; 1–7. IEEE
  • Singh HP, Batish DR, Kaur G, Arora K, Kohli RK. Nitric oxide (as sodium nitroprusside) supplementation ameliorates cd toxicity in hydroponically grown wheat roots. Environ Exp Bot. 2008;63(1–3):158–167. doi:10.1016/j.envexpbot.2007.12.005.
  • Cantrel C, Vazquez T, Puyaubert J, Reze N, Lesch M, Kaiser WM, Dutilleul C, Guillas I, Zachowski A, Baudouin E. Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol. 2011;189(2):415–427. doi:10.1111/j.1469-8137.2010.03500.x.
  • Farnese FS, Menezes-Silva PE, Gusman GS, Oliveira JA. When bad guys become good ones: the key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front Plant Sci. 2016;7:471. doi:10.3389/fpls.2016.00471.
  • Song L, Ding W, Zhao M, Sun B, Zhang L. Nitric oxide protects against oxidative stress under heat stress in the calluses from two ecotypes of reed. Plant Sci. 2006;171(4):449–458. doi:10.1016/j.plantsci.2006.05.002.
  • Lee U, Wie C, Fernandez BO, Feelisch M, Vierling E. Modulation of nitrosative stress by S-nitrosoglutathione reductase is critical for thermotolerance and plant growth in Arabidopsis. Plant Cell. 2008;20(3):786–802. doi:10.1105/tpc.107.052647.
  • León J, Costa‐Broseta Á. Present knowledge and controversies, deficiencies, and misconceptions on nitric oxide synthesis, sensing, and signaling in plants. Plant, Cell & Environ. 2020;43(1):1–5. doi:10.1111/pce.13617.