645
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Plant hormone profiling of scion and rootstock incision sites and intra- and inter-family graft junctions in Nicotiana benthamiana

, , , , , , , , & ORCID Icon show all
Article: 2331358 | Received 25 Dec 2023, Accepted 07 Feb 2024, Published online: 21 Mar 2024

References

  • Lee JM, Oda M. Grafting of herbaceous vegetable and ornamental crops. Hortic Rev (Am Soc Hortic Sci). 2003;28(2):61–17. doi:10.1002/9780470650851.ch2
  • Rouphael Y, Cardarelli M, Colla G, Rea E. Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience. 2008;43(3):730–6. doi:10.21273/hortsci.43.3.730. PubMed PMID: WOS:000256245900198.
  • Mudge K, Janick J, Scofield S, Goldschmidt EEA. History of grafting. Hortic Rev (Am Soc Hortic Sci). 2009;35:437–493. doi:10.1002/9780470593776.ch9.
  • Edelstein M, Plaut Z, Ben-Hur M. Sodium and chloride exclusion and retention by non-grafted and grafted melon and Cucurbita plants. J Exp Bot. 2011;62(1):177–84. doi:10.1093/jxb/erq255. PubMed PMID: WOS:000284951900015.
  • Lee JM, Kubota C, Tsao SJ, Bie Z, Echevarria PH, Morra L, Oda M. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci Hortic (Amsterdam). 2010;127(2):93–105. doi: 10.1016/j.scienta.2010.08.003. PubMed PMID: WOS:000285951800002.
  • Schwarz D, Rouphael Y, Colla G, Venema JH. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: thermal stress, water stress and organic pollutants. Sci Hortic (Amsterdam). 2010;127(2):162–71. doi:10.1016/J.SCIENTA.2010.09.016. PMID.
  • Habibi F, Liu T, Folta K, Sarkhosh A. Physiological, biochemical, and molecular aspects of grafting in fruit trees. Horticul Res. 2022;9:uhac032. doi:10.1093/hr/uhac032.
  • Goldschmidt EE. Plant grafting: new mechanisms, evolutionary implications. Front Plant Sci. 2014;5. doi:10.3389/fpls.2014.00727. PubMed PMID: WOS:000347779400001.
  • Tsutsui H, Notaguchi M. The use of grafting to study systemic signaling in plants. Plant Cell Physiol. 2017;58(8):1291–301. doi:10.1093/pcp/pcx098. PubMed PMID: WOS:000407006900006.
  • Thomas HR, Frank MH. Connecting the pieces: uncovering the molecular basis for long-distance communication through plant grafting. New Phytol. 2019;223(2):582–9. doi:10.1111/nph.15772. PubMed PMID: WOS:000472678700012.
  • Melnyk CW. Plant grafting: insights into tissue regeneration. Regeneration. 2017;4(1):3–14. doi:10.1002/reg2.71. PubMed PMID: WOS:000397255900001.
  • Notaguchi M, Kurotani K, Sato Y, Tabata R, Kawakatsu Y, Okayasu K, Sawai Y, Okada R, Asahina M, Ichihashi Y. et al. Cell-cell adhesion in plant grafting is facilitated by β-1,4-glucanases. Science. 2020;369(6504):698–702. doi:10.1126/science.abc3710. PubMed PMID: WOS:000559184400047.
  • Melnyk CW, Schuster C, Leyser O, Meyerowitz EM. A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr Biol. 2015 18;25(10):1306–1318. doi: 10.1016/j.cub.2015.03.032. PubMed PMID: 25891401; PMCID: PMC4798781.
  • Nanda A, Melnyk C. The role of plant hormones during grafting. J Plant Res. 2018;131(1):49–58. doi: 10.1007/s10265-017-0994-5. PubMed PMID: WOS:000419905100008.
  • Asahina M, Azuma K, Pitaksaringkarn W, Yamazaki T, Mitsuda N, Ohme-Takagi M, Yamaguchi S, Kamiya Y, Okada K, Nishimura T. et al. Spatially selective hormonal control of RAP2.6L and ANAC071 transcription factors involved in tissue reunion in arabidopsis. Proc Natl Acad Sci USA. 2011;108(38):16128–32. doi:10.1073/pnas.1110443108. PubMed PMID: WOS:000295030000088.
  • Pitaksaringkarn W, Ishiguro S, Asahina M, Satoh S. ARF6 and ARF8 contribute to tissue reunion in incised Arabidopsis inflorescence stems. Plant Biotechnol. 2014;31(1):49–53. doi:10.5511/plantbiotechnology.13.1028b. PubMed PMID: WOS:000332467700007.
  • Matsuoka K, Sugawara E, Aoki R, Takuma K, Terao-Morita M, Satoh S, Asahina M. Differential cellular control by cotyledon-derived phytohormones involved in graft reunion of Arabidopsis hypocotyls. Plant Cell Physiol. 2016;57(12):2620–2631. doi: 10.1093/pcp/pcw177. PubMed PMID: WOS:000393159600014.
  • Pitaksaringkarn W, Matsuoka K, Asahina M, Miura K, Sage-Ono K, Ono M, Yokoyama R, Nishitani K, Ishii T, Iwai H. et al. XTH20 and XTH19 regulated by ANAC071 under auxin flow are involved in cell proliferation in incised Arabidopsis inflorescence stems. Plant Journal. 2014;80(4):604–14. doi:10.1111/tpj.12654. PubMed PMID: WOS:000344373200004.
  • Iwase A, Mitsuda N, Koyama T, Hiratsu K, Kojima M, Arai T, Inoue Y, Seki M, Sakakibara H, Sugimoto K. et al. The AP2/ERF transcription factor WIND1 controls cell dedifferentiation in Arabidopsis. Curr Biol. 2011;21(6):508–14. doi:10.1016/j.cub.2011.02.020. PubMed PMID: WOS:000288826100027.
  • Ikeuchi M, Iwase A, Rymen B, Lambolez A, Kojima M, Takebayashi Y, Heyman J, Watanabe S, Seo M, De Veylder L. et al. Wounding triggers callus formation via dynamic hormonal and transcriptional changes. Plant Physiol. 2017;175(3):1158–74. doi:10.1104/pp.17.01035. PubMed PMID: WOS:000414052500012.
  • Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T. Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci USA. 2008;105(50):20027–20031. doi: 10.1073/pnas.0805619105. PubMed PMID: WOS:000261802300081.
  • Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tähtiharju S, Elo A, Decourteix M, Ljung K. et al. Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci USA. 2008;105(50):20032–7. doi:10.1073/pnas.0805617106. PubMed PMID: WOS:000261802300082.
  • Immanen J, Nieminen K, Smolander OP, Kojima M, Serra JA, Koskinen P, Zhang J, Elo A, Mähönen A, Street N. et al. Cytokinin and auxin display distinct but interconnected distribution and signaling profiles to stimulate cambial activity. Curr Biol. 2016;26(15):1990–7. doi:10.1016/j.cub.2016.05.053. PubMed PMID: WOS:000381241100020.
  • Mahonen AP, Bonke M, Kauppinen L, Riikonen M, Benfey PN, Helariutta Y. A novel two-component hybrid molecule regulates vascular morphogenesis of the Arabidopsis root. Genes Dev. 2000;14(23):2938–43. doi: 10.1101/gad.189200. PubMed PMID: WOS:000165788600002.
  • Nishimura C, Ohashi Y, Sato S, Kato T, Tabata S, Ueguchi C. Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in arabidopsis. Plant Cell. 2004;16(6):1365–77. doi:10.1105/tpc.021477. PubMed PMID: WOS:000221984700004.
  • Osugi A, Sakakibara H. Q&A: how do plants respond to cytokinins and what is their importance? BMC Biol. 2015;13(1). doi:10.1186/s12915-015-0214-5. PubMed PMID: WOS:000365448100002.
  • Schaller GE, Bishopp A, Kieber JJ. The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell. 2015;27(1):44–63. doi:10.1105/tpc.114.133595. PubMed PMID: WOS:000350764700009.
  • Kieber JJ, Schaller GE. Cytokinin signaling in plant development. Development. 2018;145(4). doi:10.1242/dev.149344. PubMed PMID: WOS:000426396800003.
  • Bishopp A, Help H, El-Showk S, Weijers D, Scheres B, Friml J, Benková E, Mähönen A, Helariutta Y. A mutually inhibitory interaction between auxin and cytokinin specifies vascular pattern in roots. Curr Biol. 2011;21(11):917–926. doi: 10.1016/j.cub.2011.04.017. PubMed PMID: WOS:000291668100015.
  • Mahonen AP, Bishopp A, Higuchi M, Nieminen KM, Kinoshita K, Tormakangas K, Ikeda Y, Oka A, Kakimoto T, Helariutta Y. et al. Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science. 2006;311(5757):94–98. doi:10.1126/science.1118875. PubMed PMID: WOS:000234546300041.
  • Mahonen AP, Higuchi M, Tormakangas K, Miyawaki K, Pischke MS, Sussman MR, Helariutta Y, Kakimoto T. Cytokinins regulate a bidirectional phosphorelay network in arabidopsis. Curr Biol. 2006;16(11):1116–1122. doi: 10.1016/j.cub.2006.04.030. PubMed PMID: WOS:000238245900025.
  • Yokoyama A, Yamashino T, Amano YI, Tajima Y, Imamura A, Sakakibara H, Mizuno T. Type-B ARR transcription factors, ARR10 and ARR12, are implicated in cytokinin-mediated regulation of protoxylem differentiation in roots of Arabidopsis thaliana. Plant Cell Physiol. 2007;48(1):84–96. doi: 10.1093/pcp/pcl040. PubMed PMID: WOS:000243993900010.
  • Andrews PK, Marquez CS. Graft incompatibility. Hortic Rev (Am Soc Hortic Sci). 1993;15:183–232.
  • Kojima M, Kamada-Nobusada T, Komatsu H, Takei K, Kuroha T, Mizutani M, Ashikari M, Ueguchi-Tanaka M, Matsuoka M, Suzuki K. et al. Highly sensitive and high-throughput analysis of plant hormones using MS-Probe modification and liquid chromatography–tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant And Cell Physiology. 2009;50(7):1201–1214. doi:10.1093/pcp/pcp057. PubMed PMID: WOS:000268116000004.
  • Kojima M, Sakakibara H. Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography-tandem mass spectrometry. Methods Mol Biol. 2021;918:151–164. doi:10.1007/978-1-61779-995-2_11. PubMed PMID: 22893291.
  • Shinozaki Y, Hao SH, Kojima M, Sakakibara H, Ozeki-Iida Y, Zheng Y, Fei Z, Zhong S, Giovannoni JJ, Rose JKC. et al. Ethylene suppresses tomato (Solanum lycopersicum) fruit set through modification of gibberellin metabolism. Plant Journal. 2015;83(2):237–51. doi:10.1111/tpj.12882. PubMed PMID: WOS:000357617200004.
  • Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita-Tsujimura K, Yu H, Dai X, Takebayashi Y. et al. Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol. 2015;56(8):1641–54. doi:10.1093/pcp/pcv088. PubMed PMID: WOS:000359649400016.
  • Sakakibara H. Cytokinins: activity, biosynthesis, and translocation. Annu Rev Plant Biol. 2006;57(1):431–449. doi: 10.1146/annurev.arplant.57.032905.105231. PMID: 16669769.
  • Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, Matsuoka K, Asahina M, Mitsuda N, Shirasu K, Fukuda H. et al. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. New Phytol. 2021;232(2):734–52. doi:10.1111/nph.17594. PubMed PMID: WOS:000683447800001.
  • Iwase A, Mitsuda N, Ikeuchi M, Ohnuma M, Koizuka C, Kawamoto K, Imamura J, Ezura H, Sugimoto K. Arabidopsis WIND1 induces callus formation in rapeseed, tomato, and tobacco. Plant Signal Behav. 2013;8(12):e27432. doi:10.4161/psb.27432. PMID: 24389814.
  • Jiang F, Hartung W. Long-distance signaling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J Exp Bot. 2008;59(1):37–43. doi: 10.1093/jxb/erm127. PubMed PMID: WOS:000252717700005.
  • Peuke AD, Dodd I. ABA flow modelling in ricinus communis exposed to salt stress and variable nutrition. J Exp Bot. 2016;67(18):5301–11. doi: 10.1093/jxb/erw291. PubMed PMID: WOS:000386067000004.
  • Manzi M, Lado J, Rodrigo MJ, Arbona V, Gomez-Cadenas A. ABA accumulation in water-stressed citrus roots does not rely on carotenoid content in this organ. Plant Sci. 2016;252:151–61. doi:10.1016/j.plantsci.2016.07.017. PubMed PMID: WOS:000386410000015.
  • Davies WJ, Kudoyarova G, Hartung W. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant’s response to drought. J Plant Growth Regul. 2005;24(4):285–295. doi:10.1007/s00344-005-0103-1.
  • Ramachandran P, Wang GD, Augstein F, Annelie JD, Carlsbecker A. Continuous root xylem formation and vascular acclimation to water deficit involves endodermal ABA signalling via miR165. Development. 2018;145(3). doi:10.1242/dev.159202. PubMed PMID: WOS:000424653300014.
  • Asahina M, Iwai H, Kikuchi A, Yamaguchi S, Kamiya Y, Kamada H, Satoh S. Gibberellin produced in the cotyledon is required for cell division during tissue reunion in the cortex of cut cucumber and tomato hypocotyls. Plant Physiol. 2002;129(1):201–210. doi: 10.1104/pp.010886. PubMed PMID: WOS:000175762000022.
  • Jang G, Yoon Y, Choi YD. Jasmonic acid modulates xylem development by controlling expression of PIN-FORMED 7. Plant Signal Behav. 2019;14(9). doi:10.1080/15592324.2019.1637664. PubMed PMID: WOS:000474123900001.
  • Kurotani K, Notaguchi M. Cell-to-cell connection in plant grafting-molecular insights into symplasmic reconstruction. Plant Cell Physiol. 2021;62(9):1362–1371. doi: 10.1093/pcp/pcab109. PubMed PMID: WOS:000728395800003.
  • Takei K, Yamaya T, Sakakibara H. Arabidopsis CYP735A1 and CYP735A2 encode cytokinin hydroxylases that catalyze the biosynthesis of trans-zeatin. J Biol Chem. 2004;279(40):41866–72. doi:10.1074/jbc.M406337200. PubMed PMID: WOS:000224075500077.
  • Kachroo P, Shanklin J, Shah J, Whittle EJ, Klessig DF. A fatty acid desaturase modulates the activation of defense signaling pathways in plants. Proc Natl Acad Sci USA. 2001;98(16):9448–53. doi: 10.1073/pnas.151258398. PubMed PMID: WOS:000170216900096.
  • Kloek AP, Verbsky ML, Sharma SB, Schoelz JE, Vogel J, Klessig DF, Kunkel BN. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant Journal. 2001;26(5):509–522. doi: 10.1046/j.1365-313x.2001.01050.x. PubMed PMID: WOS:000170005900005.