201
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Repetitive transcranial magnetic stimulation and fluoxetine attenuate astroglial activation and benefit behaviours in a chronic unpredictable mild stress mouse model of depression

ORCID Icon, , , , , , , & show all
Pages 82-94 | Received 03 May 2023, Accepted 02 Nov 2023, Published online: 21 Nov 2023

References

  • Ali SS, Abd El Wahab MG, Ayuob NN, Suliaman M. 2017. The antidepressant-like effect of ocimum basilicum in an animal model of depression. Biotech Histochem. 92(6):390–401. doi: 10.1080/10520295.2017.1323276.
  • Ayuob NN, Ali SS, Suliaman M, El Wahab MGA, Ahmed SM. 2016. The antidepressant effect of musk in an animal model of depression: a histopathological study. Cell Tissue Res. 366(2):271–284. doi: 10.1007/s00441-016-2468-9.
  • Badihian N, Daniali SS, Kelishadi R. 2020. Transcriptional and epigenetic changes of brain derived neurotrophic factor following prenatal stress: a systematic review of animal studies. Neurosci Biobehav Rev. 117:211–231. doi: 10.1016/j.neubiorev.2019.12.018.
  • Bharti V, Tan H, Deol J, Wu Z, Wang JF. 2020. Upregulation of antioxidant thioredoxin by antidepressants fluoxetine and venlafaxine. Psychopharmacology (Berl). 237(1):127–136. doi: 10.1007/s00213-019-05350-9.
  • Björkholm C, Monteggia LM. 2016. BDNF - a key transducer of antidepressant effects. Neuropharmacology. 102:72–79. doi: 10.1016/j.neuropharm.2015.10.034.
  • Bondi CO, Rodriguez G, Gould GG, Frazer A, Morilak DA. 2008. Chronic unpredictable stress induces a cognitive deficit and anxiety-like behavior in rats that is prevented by chronic antidepressant drug treatment. Neuropsychopharmacology. 33(2):320–331. doi: 10.1038/sj.npp.1301410.
  • Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A, Barreto GE. 2019. Growth factors and neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol. 56(4):2339–2351. doi: 10.1007/s12035-018-1203-9.
  • de Pins B, Cifuentes-Díaz C, Farah AT, López-Molina L, Montalban E, Sancho-Balsells A, López A, Ginés S, Delgado-García JM, Alberch J, et al. 2019. Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J Neurosci. 39(13):2441–2458. doi: 10.1523/JNEUROSCI.2121-18.2019.
  • Dolotov OV, Inozemtseva LS, Myasoedov NF, Grivennikov IA. 2022. Stress-induced depression and Alzheimer’s disease: focus on astrocytes. Int J Mol Sci. 23(9):4999.
  • Du Preez A, Onorato D, Eiben I, Musaelyan K, Egeland M, Zunszain PA, Fernandes C, Thuret S, Pariante CM. 2021. Chronic stress followed by social isolation promotes depressive-like behaviour, alters microglial and astrocyte biology and reduces hippocampal neurogenesis in male mice. Brain Behav Immun. 91:24–47. doi: 10.1016/j.bbi.2020.07.015.
  • Feng J, Zhang Q, Zhang C, Wen Z, Zhou X. 2019. The effect of sequential bilateral low-frequency rTMS over dorsolateral prefrontal cortex on serum level of BDNF and GABA in patients with primary insomnia. Brain Behav. 9(2):e01206.
  • Feng S, Wang S, Sun S, Su H, Zhang L. 2021. Effects of combination treatment with transcranial magnetic stimulation and bone marrow mesenchymal stem cell transplantation or RAF inhibition on spinal cord injury in rats. Mol Med Rep. 23(4):294. doi: 10.3892/mmr.2021.11934.
  • Fitzgerald PB, George MS, Pridmore S. 2022. The evidence is in: repetitive transcranial magnetic stimulation is an effective, safe and well-tolerated treatment for patients with major depressive disorder. Aust N Z J Psychiatry. 56(7):745–751. doi: 10.1177/00048674211043047.
  • Fitzgerald PB. 2021. Targeting repetitive transcranial magnetic stimulation in depression: do we really know what we are stimulating and how best to do it? Brain Stimul. 14(3):730–736. doi: 10.1016/j.brs.2021.04.018.
  • Galts CPC, Bettio LEB, Jewett DC, Yang CC, Brocardo PS, Rodrigues ALS, Thacker JS, Gil-Mohapel J. 2019. Depression in neurodegenerative diseases: common mechanisms and current treatment options. Neurosci Biobehav Rev. 102:56–84. doi: 10.1016/j.neubiorev.2019.04.002.
  • He J, Luo H, Yan B, Yu Y, Wang H, Wei Z, Zhang Y, Xu H, Tempier A, Li X, et al. 2009. Beneficial effects of quetiapine in a transgenic mouse model of Alzheimer’s disease. Neurobiol Aging. 30(8):1205–1216. doi: 10.1016/j.neurobiolaging.2007.11.001.
  • He J, Yang Y, Yu Y, Li X, Li XM. 2006. The effects of chronic administration of quetiapine on the methamphetamine-induced recognition memory impairment and dopaminergic terminal deficit in rats. Behav Brain Res. 172(1):39–45. doi: 10.1016/j.bbr.2006.04.009.
  • He J, Zu Q, Wen C, Liu Q, You P, Li X, Wang W. 2020. Quetiapine attenuates Schizophrenia-like behaviors and demyelination in a MK-801-Induced mouse model of schizophrenia. Front Psychiatry. 11:843. doi: 10.3389/fpsyt.2020.00843.
  • Heath A, Lindberg DR, Makowiecki K, Gray A, Asp AJ, Rodger J, Choi D-S, Croarkin PE. 2018. Medium- and high-intensity rTMS reduces psychomotor agitation with distinct neurobiologic mechanisms. Transl Psychiatry. 8(1):126. doi: 10.1038/s41398-018-0129-3.
  • Hong Y, Liu Q, Peng M, Bai M, Li J, Sun R, Guo H, Xu P, Xie Y, Li Y, et al. 2020. High-frequency repetitive transcranial magnetic stimulation improves functional recovery by inhibiting neurotoxic polarization of astrocytes in ischemic rats. J Neuroinflammation. 17(1):150. doi: 10.1186/s12974-020-01747-y.
  • Jin H-J, Pei L, Li Y-N, Zheng H, Yang S, Wan Y, Mao L, Xia Y-P, He Q-W, Li M, et al. 2017. Alleviative effects of fluoxetine on depressive-like behaviors by epigenetic regulation of BDNF gene transcription in mouse model of post-stroke depression. Sci Rep. 7(1):14926. doi: 10.1038/s41598-017-13929-5.
  • Kinoshita M, Hirayama Y, Fujishita K, Shibata K, Shinozaki Y, Shigetomi E, Takeda A, Le HPN, Hayashi H, Hiasa M, et al. 2018. Anti-depressant fluoxetine reveals its therapeutic effect via astrocytes. EBioMedicine. 32:72–83. doi: 10.1016/j.ebiom.2018.05.036.
  • Koizumi S. 2021. Glial purinergic signals and psychiatric disorders. Front Cell Neurosci. 15:822614. doi: 10.3389/fncel.2021.822614.
  • Li K, Yan L, Zhang Y, Yang Z, Zhang C, Li Y, Kalueff AV, Li W, Song C. 2020. Seahorse treatment improves depression-like behavior in mice exposed to CUMS through reducing inflammation/oxidants and restoring neurotransmitter and neurotrophin function. J Ethnopharmacol. 250:112487. doi: 10.1016/j.jep.2019.112487.
  • Linnerbauer M, Wheeler MA, Quintana FJ. 2020. Astrocyte crosstalk in CNS inflammation. Neuron. 108(4):608–622. doi: 10.1016/j.neuron.2020.08.012.
  • Luo J, Zheng H, Zhang L, Zhang Q, Li L, Pei Z, et al. 2017. High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci. 18(2):455.
  • Michel M, Fiebich BL, Kuzior H, Meixensberger S, Berger B, Maier S, Nickel K, Runge K, Denzel D, Pankratz B, et al. 2021. Increased GFAP concentrations in the cerebrospinal fluid of patients with unipolar depression. Transl Psychiatry. 11(1):308. doi: 10.1038/s41398-021-01423-6.
  • Ning L, Rathi Y, Barbour T, Makris N, Camprodon JA. 2022. White matter markers and predictors for subject-specific rTMS response in major depressive disorder. J Affect Disord. 299:207–214. doi: 10.1016/j.jad.2021.12.005.
  • Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, et al. 2020. EPA is more effective than DHA to improve depression-like behavior, glia cell dysfunction and hippcampal apoptosis signaling in a chronic stress-induced rat model of depression. Int J Mol Sci. 21(5):1769.
  • Pytka K, Głuch-Lutwin M, Kotańska M, Waszkielewicz A, Kij A, Walczak M. 2018. Single administration of HBK-15-a triple 5-HT(1A), 5-HT(7), and 5-HT(3) receptor antagonist-reverses Depressive-like behaviors in mouse model of depression induced by corticosterone. Mol Neurobiol. 55(5):3931–3945.
  • Shang Y, Wang X, Li F, Yin T, Zhang J, Zhang T. 2019. rTMS ameliorates prenatal Stress-Induced cognitive deficits in Male-Offspring rats associated with BDNF/TrkB signaling pathway. Neurorehabil Neural Repair. 33(4):271–283. doi: 10.1177/1545968319834898.
  • Shu X, Sun Y, Sun X, Zhou Y, Bian Y, Shu Z, Ding J, Lu M, Hu G. 2019. The effect of fluoxetine on astrocyte autophagy flux and injured mitochondria clearance in a mouse model of depression. Cell Death Dis. 10(8):577. doi: 10.1038/s41419-019-1813-9.
  • Torres-Platas SG, Hercher C, Davoli MA, Maussion G, Labonté B, Turecki G, Mechawar N. 2011. Astrocytic hypertrophy in anterior cingulate white matter of depressed suicides. Neuropsychopharmacology. 36(13):2650–2658. doi: 10.1038/npp.2011.154.
  • Wagner E, Löhrs L, Siskind D, Honer WG, Falkai P, Hasan A. 2019. Clozapine augmentation strategies—a systematic meta-review of available evidence. Treatment options for clozapine resistance. J Psychopharmacol. 33(4):423–435. doi: 10.1177/0269881118822171.
  • Wang D-P, Yin H, Lin Q, Fang S-P, Shen J-H, Wu Y-F, Su S-H, Hai J. 2019. Andrographolide enhances hippocampal BDNF signaling and suppresses neuronal apoptosis, astroglial activation, neuroinflammation, and spatial memory deficits in a rat model of chronic cerebral hypoperfusion. Naunyn Schmiedebergs Arch Pharmacol. 392(10):1277–1284. doi: 10.1007/s00210-019-01672-9.
  • Wang J, Zhang Y, Xu H, Zhu S, Wang H, He J, Zhang H, Guo H, Kong J, Huang Q, et al. 2014. Fluoxetine improves behavioral performance by suppressing the production of soluble β-amyloid in APP/PS1 mice. Curr Alzheimer Res. 11(7):672–680. doi: 10.2174/1567205011666140812114715.
  • Wang Y, Ni J, Zhai L, Gao C, Xie L, Zhao L, Yin X. 2019. Inhibition of activated astrocyte ameliorates lipopolysaccharide- induced depressive-like behaviors. J Affect Disord. 242:52–59. doi: 10.1016/j.jad.2018.08.015.
  • Yan B, He J, Xu H, Zhang Y, Bi X, Thakur S, Gendron A, Kong J, Li X-M. 2007. Quetiapine attenuates the depressive and anxiolytic-like behavioural changes induced by global cerebral ischemia in mice. Behav Brain Res. 182(1):36–41. doi: 10.1016/j.bbr.2007.05.002.
  • Zhang C, Kalueff AV, Song C. 2019. Minocycline ameliorates anxiety-related self-grooming behaviors and alters hippocampal neuroinflammation, GABA and serum cholesterol levels in female Sprague-Dawley rats subjected to chronic unpredictable mild stress. Behav Brain Res. 363:109–117. doi: 10.1016/j.bbr.2019.01.045.
  • Zhang JC, Yao W, Hashimoto K. 2016. Brain-derived neurotrophic factor (BDNF)-TrkB signaling in inflammation-related depression and potential therapeutic targets. Curr Neuropharmacol. 14(7):721–731. doi: 10.2174/1570159x14666160119094646.
  • Zhao Y-T, Zhang L, Yin H, Shen L, Zheng W, Zhang K, Zeng J, Hu C, Liu Y. 2021. Hydroxytyrosol alleviates oxidative stress and neuroinflammation and enhances hippocampal neurotrophic signaling to improve stress-induced depressive behaviors in mice. Food Funct. 12(12):5478–5487. doi: 10.1039/d1fo00210d.
  • Zhu S, Wang J, Zhang Y, Li V, Kong J, He J, Li X-M. 2014. Unpredictable chronic mild stress induces anxiety and depression-like behaviors and inactivates AMP-activated protein kinase in mice. Brain Res. 1576:81–90. doi: 10.1016/j.brainres.2014.06.002.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.