91
Views
0
CrossRef citations to date
0
Altmetric
Original Investigations

Common changes in rat cortical gene expression after antidepressant drug treatment: Impacts on metabolism of polyamines, mRNA splicing, regulation of RAS by GAPs, neddylation and GPCR ligand binding

&
Pages 200-213 | Received 07 Nov 2023, Accepted 27 Jan 2024, Published online: 01 Mar 2024

References

  • Alboni S, Benatti C, Montanari C, Tascedda F, Brunello N. 2013. Chronic antidepressant treatments resulted in altered expression of genes involved in inflammation in the rat hypothalamus. Eur J Pharmacol. 721(1–3):158–167. doi: 10.1016/j.ejphar.2013.08.046.
  • Almeida J, Duarte JO, Oliveira LA, Crestani CC. 2015. Effects of nitric oxide synthesis inhibitor or fluoxetine treatment on depression-like state and cardiovascular changes induced by chronic variable stress in rats. Stress. 18(4):462–474. doi: 10.3109/10253890.2015.1038993.
  • Baethge C, Braun C, Rink L, Schwarzer G, Henssler J, Bschor T. 2022. Dose effects of tricyclic antidepressants in the treatment of acute depression – a systematic review and meta-analysis of randomized trials. J Affect Disord. 307:191–198. doi: 10.1016/j.jad.2022.03.075.
  • Beurel E, Grieco SF, Jope RS. 2015. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther. 148:114–131. doi: 10.1016/j.pharmthera.2014.11.016.
  • Boschloo L, Hieronymus F, Lisinski A, Cuijpers P, Eriksson E. 2023. The complex clinical response to selective serotonin reuptake inhibitors in depression: a network perspective. Transl Psychiatry. 13(1):19. doi: 10.1038/s41398-022-02285-2.
  • Bottomly D, Ryabinin PA, Tyner JW, Chang BH, Loriaux MM, Druker BJ, McWeeney SK, Wilmot B. 2013. Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine. Genome Med. 5(11):103. doi: 10.1186/gm509.
  • Bustin SA, Nolan T. 2004. Pitfalls of quantitative real-time reverse-transcription polymerase chain reaction. J Biomol Tech. 15(3):155–166.
  • Castellano C. 1977. Effects of chlorpromazine and imipramine on discrimination learning, consolidation, and learned behavior in two inbred strains of mice. Psychopharmacology. 53(1):27–31. doi: 10.1007/BF00426690.
  • Cheng BF, Lian JJ, Yang HJ, Wang L, Yu HH, Bi JJ, Gao YX, Chen SJ, Wang M, Feng ZW. 2020. Neural cell adhesion molecule regulates chondrocyte hypertrophy in chondrogenic differentiation and experimental osteoarthritis. Stem Cells Transl Med. 9(2):273–283. doi: 10.1002/sctm.19-0190.
  • Cipriani A, Furukawa TA, Salanti G, Chaimani A, Atkinson LZ, Ogawa Y, Leucht S, Ruhe HG, Turner EH, Higgins JPT, et al. 2018. Comparative efficacy and acceptability of 21 antidepressant drugs for the acute treatment of adults with major depressive disorder: a systematic review and network meta-analysis. Lancet. 391(10128):1357–1366. doi: 10.1016/S0140-6736(17)32802-7.
  • Cook RD, Weisberg S. 1999. Applied regression including computing and graphics. Hoboken (NJ): Wiley.
  • Cui X, Sun X, Niu W, Kong L, He M, Zhong A, Chen S, Jiang K, Zhang L, Cheng Z. 2016. Long non-coding RNA: potential diagnostic and therapeutic biomarker for major depressive disorder. Med Sci Monit. 22:5240–5248. doi: 10.12659/msm.899372.
  • Dean B, Keriakous D, Thomas EA, Scarr E. 2005. Understanding the pathology of schizophrenia: the impact of high-throughput screening of the genome and proteome in postmortem CNS. CPSR. 1(1):1–9. doi: 10.2174/1573400052953547.
  • Dean B, Pereira A, Pavey G, Singh B. 1997. Repeated antidepressant drug treatment, time of death and frequency of handling do not affect [3H]paroxetine binding in rat cortex. Psychiatry Res. 73(3):173–179. doi: 10.1016/s0165-1781(97)00125-x.
  • Dean B, Scarr E. 2023. Common changes in rat cortical gene expression after chronic treatment with chlorpromazine and haloperidol may be related to their antipsychotic efficacy. Neuroscience Applied. 2:101015. doi: 10.1016/j.nsa.2022.101015.
  • Dean B, Scarr E. 2024. Common changes in rat cortical gene expression after valproate or lithium treatment particularly affect pre- and post-synaptic pathways that regulate four neurotransmitters systems. World J Biol Psychiatry. 25(1):54–64. doi: 10.1080/15622975.2023.2258972.
  • Drosten M, Dhawahir A, Sum EY, Urosevic J, Lechuga CG, Esteban LM, Castellano E, Guerra C, Santos E, Barbacid M. 2010. Genetic analysis of ras signalling pathways in cell proliferation, migration and survival. Embo J. 29(6):1091–1104. doi: 10.1038/emboj.2010.7.
  • Ellis SE, Panitch R, West AB, Arking DE. 2016. Transcriptome analysis of cortical tissue reveals shared sets of downregulated genes in autism and schizophrenia. Transl Psychiatry. 6(5):e817–e817. doi: 10.1038/tp.2016.87.
  • Erburu M, Cajaleon L, Guruceaga E, Venzala E, Muñoz-Cobo I, Beltrán E, Puerta E, Tordera RM. 2015. Chronic mild stress and imipramine treatment elicit opposite changes in behavior and in gene expression in the mouse prefrontal cortex. Pharmacol Biochem Behav. 135:227–236. doi: 10.1016/j.pbb.2015.06.001.
  • Farahani A, Correll CU. 2012. Are antipsychotics or antidepressants needed for psychotic depression? A systematic review and meta-analysis of trials comparing antidepressant or antipsychotic monotherapy with combination treatment. J Clin Psychiatry. 73(4):486–496. doi: 10.4088/JCP.11r07324.
  • Fernandes BS, Dai Y, Jia P, Zhao Z. 2022. Charting the proteome landscape in major psychiatric disorders: from biomarkers to biological pathways towards drug discovery. Eur Neuropsychopharmacol. 61:43–59. doi: 10.1016/j.euroneuro.2022.06.001.
  • François BL, Zhang L, Mahajan GJ, Stockmeier CA, Friedman E, Albert PR. 2018. A novel alternative splicing mechanism that enhances human 5-HT1A receptor RNA stability is altered in major depression. J Neurosci. 38(38):8200–8210. doi: 10.1523/JNEUROSCI.0902-18.2018.
  • Fukamachi K, Matsuoka Y, Ohno H, Hamaguchi T, Tsuda H. 2002. Neuronal leucine-rich repeat protein-3 amplifies MAPK activation by epidermal growth factor through a carboxyl-terminal region containing endocytosis motifs. J Biol Chem. 277(46):43549–43552. doi: 10.1074/jbc.C200502200.
  • Gibbons A, Udawela M, Dean B. 2018. Non-coding RNA as novel players in the pathophysiology of schizophrenia. Noncoding RNA. 4(2):11. doi: 10.3390/ncrna4020011.
  • Gibbons AS, Jeon WJ, Scarr E, Dean B. 2016. Changes in muscarinic M2 receptor levels in the cortex of subjects with bipolar disorder and major depressive disorder and in rats after treatment with mood stabilisers and antidepressants. IJNPPY. 19(4):pyv118. doi: 10.1093/ijnp/pyv118.
  • Gillespie M, Jassal B, Stephan R, Milacic M, Rothfels K, Senff-Ribeiro A, Griss J, Sevilla C, Matthews L, Gong C, et al. 2021. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50(D1):D687–D692. doi: 10.1093/nar/gkab1028.
  • Gururajan A, Reif A, Cryan JF, Slattery DA. 2019. The future of rodent models in depression research. Nat Rev Neurosci. 20(11):686–701. doi: 10.1038/s41583-019-0221-6.
  • Hagihara H, Ohira K, Miyakawa T. 2019. Transcriptomic evidence for immaturity induced by antidepressant fluoxetine in the hippocampus and prefrontal cortex. Neuropsychopharmacol Rep. 39(2):78–89. doi: 10.1002/npr2.12048.
  • Halliwell G, Quinton RM, Williams FE. 1964. A comparison of imipramine, chlorpromazine and related drugs in various tests involving autonomic functions and antagonism of reserpine. Br J Pharmacol Chemother. 23(2):330–350. doi: 10.1111/j.1476-5381.1964.tb01590.x.
  • Hervé M, Bergon A, Le Guisquet A-M, Leman S, Consoloni J-L, Fernandez-Nunez N, Lefebvre M-N, El-Hage W, Belzeaux R, Belzung C, et al. 2017. Translational identification of transcriptional signatures of major depression and antidepressant response. Front Mol Neurosci. 10:248. doi: 10.3389/fnmol.2017.00248.
  • Hicks EM, Seah C, Cote A, Marchese S, Brennand KJ, Nestler EJ, Girgenti MJ, Huckins LM. 2023. Integrating genetics and transcriptomics to study major depressive disorder: a conceptual framework, bioinformatic approaches, and recent findings. Transl Psychiatry. 13(1):129. doi: 10.1038/s41398-023-02412-7.
  • Hietala OA, Laitinen SI, Laitinen PH, Lapinjoki SP, Pajunen AEI. 1983. THe inverse changes of mouse brain ornithine and S-adenosylmethionine decarboxylase activities by chlorpromazine and imipramine: dependence of ornithine decarboxylase induction on β-adrenoceptors. Biochem Pharmacol. 32(10):1581–1585. doi: 10.1016/0006-2952(83)90331-3.
  • Hopkinson I, Smith SA, Donne A, Gregory H, Franklin TJ, Grant ME, Rosamond J. 1994. The complete cDNA derived sequence of the rat prolyl 4-hydroxylase alpha subunit. Gene. 149(2):391–392. doi: 10.1016/0378-1119(94)90188-0.
  • Indrayan A, Mishra A. 2021. The importance of small samples in medical research. J Postgrad Med. 67(4):219–223. doi: 10.4103/jpgm.JPGM_230_21.
  • Infantino V, Convertini P, Menga A, Iacobazzi V. 2013. MEF2C exon α: role in gene activation and differentiation. Gene. 531(2):355–362. doi: 10.1016/j.gene.2013.08.044.
  • Kang HJ, Adams DH, Simen A, Simen BB, Rajkowska G, Stockmeier CA, Overholser JC, Meltzer HY, Jurjus GJ, Konick LC, et al. 2007. Gene expression profiling in postmortem prefrontal cortex of major depressive disorder. J Neurosci. 27(48):13329–13340. doi: 10.1523/JNEUROSCI.4083-07.2007.
  • Kawahara C, Yokota S, Fujita H. 2014. DDX6 localizes to nuage structures and the annulus of mammalian spermatogenic cells. Histochem Cell Biol. 141(1):111–121. doi: 10.1007/s00418-013-1153-2.
  • Kim HK, Tyryshkin K, Elmi N, Dharsee M, Evans KR, Good J, Javadi M, McCormack S, Vaccarino AL, Zhang X, et al. 2019. Plasma microRNA expression levels and their targeted pathways in patients with major depressive disorder who are responsive to duloxetine treatment. J Psychiatr Res. 110:38–44. doi: 10.1016/j.jpsychires.2018.12.007.
  • Kim J-W, Suzuki K, Kavalali ET, Monteggia LM. 2024. Ketamine: mechanisms and relevance to treatment of depression. Annu Rev Med. 75(1):129–143. null. doi: 10.1146/annurev-med-051322-120608.
  • Kim SS, Shetty K, Katuri V, Kitisin K, Baek HJ, Tang Y, Marshall B, Johnson L, Mishra B, Mishra L. 2006. TGF-beta signaling pathway inactivation and cell cycle deregulation in the development of gastric cancer: role of the beta-spectrin, ELF. Biochem Biophys Res Commun. 344(4):1216–1223. doi: 10.1016/j.bbrc.2006.03.236.
  • Kolch W, Berta D, Rosta E. 2023. Dynamic regulation of RAS and RAS signaling. Biochem J. 480(1):1–23. doi: 10.1042/BCJ20220234.
  • Konstantakopoulos G, Dimitrakopoulos S, Michalopoulou PG. 2020. The preclinical discovery and development of agomelatine for the treatment of depression. Expert Opin Drug Discov. 15(10):1121–1132. doi: 10.1080/17460441.2020.1781087.
  • Kowalczyk M, Kowalczyk E, Kwiatkowski P, Łopusiewicz Ł, Talarowska M, Sienkiewicz M. 2021. Cellular response to unfolded proteins in depression. Life. 11(12):1376. doi: 10.3390/life11121376.
  • Lackner DH, Schmidt MW, Wu S, Wolf DA, Bähler J. 2012. Regulation of transcriptome, translation, and proteome in response to environmental stress in fission yeast. Genome Biol. 13(4):R25. doi: 10.1186/gb-2012-13-4-r25.
  • Larsen MH, Mikkelsen JD, Hay-Schmidt A, Sandi C. 2010. Regulation of brain-derived neurotrophic factor (BDNF) in the chronic unpredictable stress rat model and the effects of chronic antidepressant treatment. J Psychiatr Res. 44(13):808–816. doi: 10.1016/j.jpsychires.2010.01.005.
  • LeGates TA, Kvarta MD, Thompson SM. 2019. Sex differences in antidepressant efficacy. Neuropsychopharmacology. 44(1):140–154. doi: 10.1038/s41386-018-0156-z.
  • Locher C, Koechlin H, Zion SR, Werner C, Pine DS, Kirsch I, Kessler RC, Kossowsky J. 2017. Efficacy and safety of selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, and placebo for common psychiatric disorders among children and adolescents: a systematic review and meta-analysis. JAMA Psychiatry. 74(10):1011–1020. doi: 10.1001/jamapsychiatry.2017.2432.
  • Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. 2017. Transcriptomics technologies. PLoS Comput Biol. 13(5):e1005457. doi: 10.1371/journal.pcbi.1005457.
  • Mao J, Hu Y, Ruan L, Ji Y, Lou Z. 2019. Role of endoplasmic reticulum stress in depression (review). Mol Med Rep. 20(6):4774–4780.
  • Marek GJ. 2017. Developing serotonergic antidepressants acting on more than the serotonin transporter. In: Handler N, Buschmann H, editors. Drug selectivity. Hoboken (NJ): Wiley; p. 335–367.
  • Martins-de-Souza D, Maccarrone G, Ising M, Kloiber S, Lucae S, Holsboer F, Turck CW. 2014. Blood mononuclear cell proteome suggests integrin and ras signaling as critical pathways for antidepressant treatment response. Biol Psychiatry. 76(7):e15-17–e17. doi: 10.1016/j.biopsych.2014.01.022.
  • Mattick JS, Amaral PP, Carninci P, Carpenter S, Chang HY, Chen L-L, Chen R, Dean C, Dinger ME, Fitzgerald KA, et al. 2023. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 24(6):430–447. doi: 10.1038/s41580-022-00566-8.
  • Maximino JR, de Oliveira GP, Alves CJ, Chadi G. 2014. Deregulated expression of cytoskeleton related genes in the spinal cord and sciatic nerve of presymptomatic SOD1(G93A) amyotrophic lateral sclerosis mouse model. Front Cell Neurosci. 8:148. doi: 10.3389/fncel.2014.00148.
  • McIntyre RS, Berk M, Brietzke E, Goldstein BI, López-Jaramillo C, Kessing LV, Malhi GS, Nierenberg AA, Rosenblat JD, Majeed A, et al. 2020. Bipolar disorders. Lancet. 396(10265):1841–1856. doi: 10.1016/S0140-6736(20)31544-0.
  • McOmish CE, Pavey G, Gibbons A, Hopper S, Udawela M, Scarr E, Dean B. 2016. Lower [3H]LY341495 binding to mGlu2/3 receptors in the anterior cingulate of subjects with major depressive disorder but not bipolar disorder or schizophrenia. J Affect Disord. 190:241–248. doi: 10.1016/j.jad.2015.10.004.
  • Menke A. 2013. Gene expression: biomarker of antidepressant therapy? Int Rev Psychiatry. 25(5):579–591. doi: 10.3109/09540261.2013.825580.
  • Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD. 2018. PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 47(D1):D419–D426. doi: 10.1093/nar/gky1038.
  • Monleon S, Parra A, Simon VM, Brain PF, D'Aquila P, Willner P. 1995. Attenuation of sucrose consumption in mice by chronic mild stress and its restoration by imipramine. Psychopharmacology. 117(4):453–457. doi: 10.1007/BF02246218.
  • Narayan S, Head SR, Gilmartin TJ, Dean B, Thomas EA. 2009. Evidence for disruption of sphingolipid metabolism in schizophrenia. J Neurosci Res. 87(1):278–288. doi: 10.1002/jnr.21822.
  • Narayan S, Tang B, Head SR, Gilmartin TJ, Sutcliffe JG, Dean B, Thomas EA. 2008. Molecular profiles of schizophrenia in the CNS at different stages of illness. Brain Res. 1239:235–248. doi: 10.1016/j.brainres.2008.08.023.
  • Newland MC, Marr MJ. 1985. The effects of chlorpromazine and imipramine on rate and stimulus control of matching to sample. J Exp Anal Behav. 44(1):49–68. doi: 10.1901/jeab.1985.44-49.
  • Nollet M, Le Guisquet AM, Belzung C. 2013. Models of depression: unpredictable chronic mild stress in mice. Curr Protoc Pharmacol. Chapter 5:Unit 5.65. doi: 10.1002/0471141755.ph0565s61.
  • Ohira K, Miyakawa T. 2011. Chronic treatment with fluoxetine for more than 6 weeks decreases neurogenesis in the subventricular zone of adult mice. Mol Brain. 4(1):10. doi: 10.1186/1756-6606-4-10.
  • Piubelli C, Carboni L, Becchi S, Mathé AA, Domenici E. 2011. Regulation of cytoskeleton machinery, neurogenesis and energy metabolism pathways in a rat gene-environment model of depression revealed by proteomic analysis. Neuroscience. 176:349–380. doi: 10.1016/j.neuroscience.2010.12.043.
  • Racagni G, Popoli M. 2008. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci. 10(4):385–400. doi: 10.31887/DCNS.2008.10.4/gracagni.
  • Ripoll N, David DJP, Dailly E, Hascoët M, Bourin M. 2003. Antidepressant-like effects in various mice strains in the tail suspension test. Behav Brain Res. 143(2):193–200. doi: 10.1016/s0166-4328(03)00034-2.
  • Scarr E, Udawela M, Dean B. 2019. Changed cortical risk gene expression in major depression and shared changes in cortical gene expression between major depression and bipolar disorders. Aust N Z J Psychiatry. 53(12):1189–1198. doi: 10.1177/0004867419857808.
  • Scarr E, Udawela M, Thomas EA, Dean B. 2018. Changed gene expression in subjects with schizophrenia and low cortical muscarinic M1 receptors predicts disrupted upstream pathways interacting with that receptor. Mol Psychiatry. 23(2):295–303. doi: 10.1038/mp.2016.195.
  • Senese NB, Rasenick MM, Traynor JR. 2018. The role of G-proteins and G-protein regulating proteins in depressive disorders. Front Pharmacol. 9:1289. doi: 10.3389/fphar.2018.01289.
  • Shelton RC, Claiborne J, Sidoryk-Wegrzynowicz M, Reddy R, Aschner M, Lewis DA, Mirnics K. 2011. Altered expression of genes involved in inflammation and apoptosis in frontal cortex in major depression. Mol Psychiatry. 16(7):751–762. doi: 10.1038/mp.2010.52.
  • Shi Y, He M. 2014. Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (pinctada fucata). Gene. 538(2):313–322. doi: 10.1016/j.gene.2014.01.031.
  • Solich J, Kolasa M, Kuśmider M, Faron-Górecka A, Pabian P, Szafran K, Żurawek D, Dziedzicka-Wasylewska M. 2015. Effect of desipramine on gene expression in the mouse frontal cortex – microarray study. Pharmacol Rep. 67(2):345–348. doi: 10.1016/j.pharep.2014.09.001.
  • Stroberg W, Schnell S. 2017. On the origin of non-membrane-bound organelles, and their physiological function. J Theor Biol. 434:42–49. doi: 10.1016/j.jtbi.2017.04.006.
  • Surget A, Wang Y, Leman S, Ibarguen-Vargas Y, Edgar N, Griebel G, Belzung C, Sibille E. 2009. Corticolimbic transcriptome changes are state-dependent and region-specific in a rodent model of depression and of antidepressant reversal. Neuropsychopharmacology. 34(6):1363–1380. doi: 10.1038/npp.2008.76.
  • Taguchi Y. 2019. Drug candidate identification based on gene expression of treated cells using tensor decomposition-based unsupervised feature extraction for large-scale data. BMC Bioinformatics. 19(Suppl 13):388. doi: 10.1186/s12859-018-2395-8.
  • Takahashi K, Saitoh A, Yamada M, Maruyama Y, Hirose N, Kamei J, Yamada M. 2008. Gene expression profiling reveals complex changes in the olfactory bulbectomy model of depression after chronic treatment with antidepressants. J Pharmacol Sci. 108(3):320–334. doi: 10.1254/jphs.08149fp.
  • Tomita H, Ziegler M, Kim H, Evans S, Choudary P, Li J, Meng F, Dai M, Neal C, Myers R, et al. 2013. G protein-linked signaling pathways in bipolar and major depressive disorders. Front Genet. 4:297. doi: 10.3389/fgene.2013.00297.
  • Truong TTT, Bortolasci CC, Kidnapillai S, Spolding B, Panizzutti B, Liu ZSJ, Kim JH, Dean OM, Richardson MF, Berk M, et al. 2022. Integrative analyses of transcriptomes to explore common molecular effects of antipsychotic drugs. Int J Mol Sci. 23(14):7508. doi: 10.3390/ijms23147508.
  • Tsapakis EM, Fernandes C, Moran-Gates T, Basu A, Sugden K, Aitchison KJ, Tarazi FI. 2014. Effects of antidepressant drug exposure on gene expression in the developing cerebral cortex. Synapse. 68(5):209–220. doi: 10.1002/syn.21732.
  • Vaghi V, Polacchini A, Baj G, Pinheiro VL, Vicario A, Tongiorgi E. 2014. Pharmacological profile of brain-derived neurotrophic factor (BDNF) splice variant translation using a novel drug screening assay: a "quantitative code". J Biol Chem. 289(40):27702–27713. doi: 10.1074/jbc.M114.586719.
  • Wang Q, Dwivedi Y. 2017. Transcriptional profiling of mitochondria associated genes in prefrontal cortex of subjects with major depressive disorder. World J Biol Psychiatry. 18(8):592–603. doi: 10.1080/15622975.2016.1197423.
  • Weis WI, Kobilka BK. 2018. The molecular basis of G protein-coupled receptor activation. Annu Rev Biochem. 87(1):897–919. doi: 10.1146/annurev-biochem-060614-033910.
  • Wu X, Shukla R, Alganem K, Zhang X, Eby HM, Devine EA, Depasquale E, Reigle J, Simmons M, Hahn MK, et al. 2021. Transcriptional profile of pyramidal neurons in chronic schizophrenia reveals lamina-specific dysfunction of neuronal immunity. Mol Psychiatry. 26(12):7699–7708. doi: 10.1038/s41380-021-01205-y.
  • Yohn SE, Collins SL, Contreras-Mora HM, Errante EL, Rowland MA, Correa M, Salamone JD. 2016. Not all antidepressants are created equal: differential effects of monoamine uptake inhibitors on Effort-Related choice behavior. Neuropsychopharmacology. 41(3):686–694. doi: 10.1038/npp.2015.188.
  • Yoo SB, Kim BT, Kim JY, Ryu V, Kang DW, Lee JH, Jahng JW. 2013. Adolescence fluoxetine increases serotonergic activity in the raphe-hippocampus axis and improves depression-like behaviors in female rats that experienced neonatal maternal separation. Psychoneuroendocrinology. 38(6):777–788. doi: 10.1016/j.psyneuen.2012.08.013.
  • You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. 2024. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: a metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry. 128:110849. doi: 10.1016/j.pnpbp.2023.110849.
  • Zhang D, Ji Y, Chen X, Chen R, Wei Y, Peng Q, Lin J, Yin J, Li H, Cui L, et al. 2022. Peripheral blood circular RNAs as a biomarker for major depressive disorder and prediction of possible pathways. Front Neurosci. 16:844422. doi: 10.3389/fnins.2022.844422.
  • Zhang J, Zhang Z, Zhang J, Zhong Z, Yao Z, Qu S, Huang Y. 2019. iTRAQ-based protein profiling in CUMS rats provides insights into hippocampal ribosome lesion and ras protein changes underlying synaptic plasticity in depression. Neural Plast. 2019:7492306–7492315. doi: 10.1155/2019/7492306.
  • Zhou L, Zhang W, Sun Y, Jia L. 2018. Protein neddylation and its alterations in human cancers for targeted therapy. Cell Signal. 44:92–102. doi: 10.1016/j.cellsig.2018.01.009.
  • Zhou Y, Xu L, Song X, Ding L, Chen J, Wang C, Gan Y, Zhu X, Yu Y, Liang Q. 2014. The potential role of heat shock proteins in acute spinal cord injury. Eur Spine J. 23(7):1480–1490. doi: 10.1007/s00586-014-3214-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.