3,256
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Climate models disagree on the sign of total radiative feedback in the Arctic

, , , &

References

  • Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L. and co-authors. 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38, n/a. doi:10.1029/2010GL046270
  • Bao, Q., Lin, P., Zhou, T., Liu, Y., Yu, Y. and co-authors. 2013. The flexible global ocean-atmosphere-land system model, spectral version 2: Fgoals-s2. Adv. Atmos. Sci. 30, 561–576. doi:10.1007/s00376-012-2113-9
  • Bintanja, R., Graversen, R. G. and Hazeleger, W. 2011. Arctic winter warming amplified by the thermal inversion and consequent low infrared cooling to space. Nature Geosci. 4, 758–761. doi:10.1038/ngeo1285
  • Block, K. and Mauritsen, T. 2013. Forcing and feedback in the mpi-esm-lr coupled model under abruptly quadrupled co2. J. Adv. Model. Earth Syst. 5, 676–691. doi:10.1002/jame.20041
  • Boé, J., Hall, A. and Qu, X. 2009. Current GCMs’ unrealistic negative feedback in the Arctic. J. Climate 22, 4682–4695. doi:10.1175/2009JCLI2885.1
  • Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S. and co-authors. 2006. How well do we understand and evaluate climate change feedback processes? J. Climate 19, 3445–3482. doi:10.1175/JCLI3819.1
  • Colman, R. A. 2003. A comparison of climate feedbacks in GCMs. Clim. Dyn. 20, 865–873. doi:10.1007/s00382-003-0310-z
  • Colman, R. A. and McAvaney, B. J. 1997. A study of general circulation model climate feedbacks determined from perturbed sea surface temperature experiment. J. Geophys. Res. 102, 19383–19319,402. doi:10.1029/97JD00206
  • Crook, J. A., Forster, P. M. and Stuber, N. 2011. Spatial patterns of modeled climate feedback and contributions to temperature response and polar amplification. J. Climate 24, 3575–3592. doi:10.1175/2011JCLI3863.1
  • Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W. and co-authors. 2012. Gfdl’s esm2 global coupled climate-carbon earth system models. part I: Physical formulation and baseline simulation characteristics. J. Climate 25, 6646–6665. doi:10.1175/JCLI-D-11-00560.1
  • Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C. and co-authors. 2011. The community climate system model version 4. J. Climate 24, 4973–4991. doi:10.1175/2011JCLI4083.1
  • Goosse, H., Kay, J. E., Armour, K. C., Bodas-Salcedo, A., Chepfer, H. and co-authors. 2018. Quantifying climate feedbacks in polar regions. Nat. Commun. 9, 1919. doi:10.1038/s41467-018-04173-0
  • Graversen, R. G. and Wang, M. 2009. Polar amplification in a coupled climate model with locked albedo. Clim. Dyn. 33, 629–643. doi:10.1007/s00382-009-0535-6
  • Graversen, R. G., Langen, P. L. and Mauritsen, T. 2014. Polar Amplification in CCSM4: Contributions from the Lapse Rate and Surface Albedo Feedbacks. J. Climate 27, 4433–4450. doi:10.1175/JCLI-D-13-00551.1
  • Hall, A. 2004. The role of surface albedo feedback in climate. J. Climate 17, 1550–1568. doi:10.1175/1520-0442(2004)017<1550:TROSAF>2.0.CO;2
  • Hansen, J., Lacis, A., Rind, D., Russell, G., Stone, P. and co-authors. 1984. Climate Sensitivity: Analysis of Feedback Mechanisms, AGU Geophysical Monograph 29, Maurice Ewing Vol. 5, American Geophysical Union, Washington, DC, pp. 130–163.
  • Holland, M. M. and Bitz, C. M. 2003. Polar amplification of climate change in coupled models. Clim. Dyn. 21, 221–232. doi:10.1007/s00382-003-0332-6
  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and co-authors. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res 113, D13103. doi:10.1029/2008JD009944
  • IPCC. 2013. Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.
  • Iversen, T., Bentsen, M., Bethke, I., Debernard, J. B., Kirkevag, A. and co-authors. 2013. The Norwegian earth system model, noresm1-m - part 2: Climate response and scenario projections. Geosci. Model Dev. 6, 389–415. doi:10.5194/gmd-6-389-2013
  • Ji, D., Wang, L., Feng, J., Wu, Q., Cheng, H. and co-authors. 2014. Description and basic evaluation of Beijing normal university earth system model (bnu-esm) version 1. Geosci. Model Dev. 7, 2039–2064. doi:10.5194/gmd-7-2039-2014
  • Klocke, D., Quaas, J. and Stevens, B. 2013. Assessment of different metrics for physical climate feedbacks. Clim. Dyn. 41, 1173–1185. doi:10.1007/s00382-013-1757-1
  • Langen, P. L., Graversen, R. G. and Mauritsen, T. 2012. Separation of contributions from radiative feedbacks to polar amplification on an aquaplanet. J. Climate 25, 3010–3024. doi:10.1175/JCLI-D-11-00246.1
  • Lu, J. and Cai, M. 2010. Quantifying contributions to polar warming amplification in an idealized coupled general circulation model. Clim. Dyn. 34, 669–687. doi:10.1007/s00382-009-0673-x
  • Manabe, S. and Wetherald, R. T. 1975. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15. doi:10.1175/1520-0469(1975)032<0003:TEODTC>2.0.CO;2
  • Mauritsen, T., Graversen, R. G., Klocke, D., Langen, P. L., Stevens, B. and co-authors. 2013. Climate feedback efficiency and synergy. Clim. Dyn. 41, 2539–2554. doi:10.1007/s00382-013-1808-7
  • Meehl, G., Stocker, T., Collins, W., Friedlingstein, P., Gaye, A. and co-authors. 2007. Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambrigde Univ. Press, Cambridge, U. K., and New York.
  • Naakka, T., Nygård, T., Vihma, T., Sedlar, J. and Graversen, R. 2019. Atmospheric moisture transport between mid? latitudes and the arctic: Regional, seasonal and vertical distributions. Int. J. Climatol. 39, 2862–2879. doi:10.1002/joc.5988
  • Payne, A. E., Jansen, M. F. and Cronin, T. W. 2015. Conceptual model analysis of the influence of temperature feedbacks on polar amplification. Geophys. Res. Lett. 42, 9561–9570. doi:10.1002/2015GL065889
  • Pincus, R. and Stevens, B. 2013. Paths to accuracy for radiation parameterizations in atmospheric models. J. Adv. Model. Earth Syst. 5, 225–233. doi:10.1002/jame.20027
  • Pithan, F. and Mauritsen, T. 2014. Arctic Amplification dominated by temperature feedbacks in contemporary climate models. Nature Geosci. 7, 181–184. doi:10.1038/ngeo2071
  • Schmidt, G. A., Ruedy, R., Hansen, J. E., Aleinov, I., Bell, N. and co-authors. 2006. Present-day atmospheric simulations using Giss Modele: Comparison to in situ, satellite, and reanalysis data. J. Climate 19, 153–192. doi:10.1175/JCLI3612.1
  • Screen, J. A. and Simmonds, I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337. doi:10.1038/nature09051
  • Serreze, M. C. and Francis, J. A. 2006. The Arctic Amplification debate. Clim. Change 76, 241–264. doi:10.1007/s10584-005-9017-y
  • Soden, B. J. and Held, I. M. 2006. An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate 19, 3354–3360. doi:10.1175/JCLI3799.1
  • Soden, B. J., Held, I. M., Colman, R., Shell, K. M., Kiehl, J. T. and co-authors. 2008. Quantifying climate feedbacks using radiative kernels. J. Climate 21, 3504–3520. doi:10.1175/2007JCLI2110.1
  • Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T. and co-authors. 2013. The atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 5, 146–172. doi:10.1002/jame.20015
  • Taylor, K. E., Stouffer, R. J. and Meehl, G. A. 2012. An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc. 93, 485–498. doi:10.1175/BAMS-D-11-00094.1
  • Taylor, P. C., Ellingson, R. G. and Cai, M. 2011. Geographical distribution of climate feedbacks in the NCAR CCSM3.0. J. Climate 24, 2737–2753. doi:10.1175/2010JCLI3788.1
  • Taylor, P. C., Cai, M., Hu, A., Meehl, J., Washington, W. and co-authors. 2013. A decomposition of feedback contributions to polar warming amplification. J. Climate 26, 7023–7043. doi:10.1175/JCLI-D-12-00696.1
  • Tomassini, L., Geoffroy, O., Dufresne, J. L., Idelkadi, A., Cagnazzo, C. and co-authors. 2013. The respective roles of surface temperature driven feedbacks and tropospheric adjustment to CO2 in CMIP5 transient climate simulations. Clim. Dyn. 41, 3103–3126. doi:10.1007/s00382-013-1682-3
  • Vavrus, S. 2004. The impact of cloud feedbacks on arctic climate under greenhouse forcing. J. Climate 17, 603–615. doi:10.1175/1520-0442(2004)017<0603:TIOCFO>2.0.CO;2
  • Vial, J., Dufresne, J.-L. and Bony, S. 2013. On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Clim. Dyn. 41, 3339–3362. doi:10.1007/s00382-013-1725-9
  • Volodin, E. M., Dianskii, N. A. and Gusev, A. V. 2010. Simulating present-day climate with the inmcm4.0 coupled model of the atmospheric and oceanic general circulations. Izv. Atmos. Ocean. Phys. 46, 414–431. doi:10.1134/S000143381004002X
  • von Salzen, K., Scinocca, J. F., McFarlane, N. A., Li, J., Cole, J. N. S. and co-authors. 2013. The Canadian fourth generation atmospheric global climate model (canam4). part i: Representation of physical processes. Atmosphere-Ocean 51, 104–125. doi:10.1080/07055900.2012.755610
  • Watanabe, M., Suzuki, T., O’ishi, R., Komuro, Y., Watanabe, S. and co-authors. 2010. Improved climate simulation by miroc5. mean states, variability, and climate sensitivity. J. Climate 23, 6312–6335. doi:10.1175/2010JCLI3679.1
  • Wendisch, M., Brückner, M., Burrows, J., Crewell, S., Dethloff, K. and co-authors. 2017. Understanding causes and effects of rapid warming in the arctic. Eos 98,
  • Wendisch, M., Macke, A., Ehrlich, A., Lüpkes, C., Mech, M. and co-authors. 2018. The Arctic cloud puzzle: Using ACLOUD/PASCAL multi-platform observations to unravel the role of clouds and aerosol particles in Arctic amplification. Bull. Amer. Meteor. Soc. 100, 841–871.
  • Wetherald, R. T. and Manabe, S. 1988. Cloud feedback processes in a general circulation model. J. Atmos. Sci. 45, 1397–1415. doi:10.1175/1520-0469(1988)045<1397:CFPIAG>2.0.CO;2
  • Winton, M. 2006. Amplified arctic climate change: What does surface albedo feedback have to do with it? Geophys. Res. Lett. 33, 701.
  • Xin, X., Zhang, L., Zhang, J., Wu, T. and Fang, Y. 2013. Climate change projections over east Asia with bcc_csm1.1 climate model under RCP scenarios. J. Meteorol. Soc. Jpn 91, 413–429. doi:10.2151/jmsj.2013-401
  • Yukimoto, S., Adachi, Y., Hosaka, M., Sakami, T., Yoshimura, H. and co-authors. 2012. A new global climate model of the meteorological research institute: Mri-cgcm3-model description and basic performance. J. Meteorol Soc JAPAN 90A, 23–64. doi:10.2151/jmsj.2012-A02