5,434
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Global variability in radiative-convective equilibrium with a slab ocean under a wide range of CO2 concentrations

, , &
Pages 1-19 | Received 23 May 2019, Accepted 20 Nov 2019, Published online: 07 Jan 2020

References

  • Arnold, N. P. and Randall, D. A. 2015. Global-scale convective aggregation: Implications for the Madden-Julian Oscillation. J. Adv. Model. Earth Syst. 7, 1499–1518. Oct. doi:10.1002/2015MS000498
  • Becker, T. and Stevens, B. 2014. Climate and climate sensitivity to changing CO2 on an idealized land planet. J. Adv. Model. Earth Syst. 6, 1205–1223. Dec. doi:10.1002/2014MS000369
  • Becker, T., Stevens, B. and Hohenegger, C. 2017. Imprint of the convective parameterization and sea-surface temperature on large-scale convective self-aggregation. J. Adv. Model. Earth Syst. 9, 1488–1505. doi:10.1002/2016MS000865
  • Betts, A. K. 1973. Non-precipitating cumulus convection and its parameterization. Quart J. Royal Met. Soc. 99, 178–196. doi:10.1002/qj.49709941915
  • Bony, S. and Dufresne, J.-L. 2005. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett 32, 2055.
  • Bony, S., Stevens, B., Coppin, D., Becker, T., Reed, K. A. and co-authors. 2016. Thermodynamic control of anvil cloud amount. Proc. Natl. Acad. Sci. USA. 113, 8927–8932. Aug. doi:10.1073/pnas.1601472113
  • Bray, A. J. 1994. Theory of phase-ordering kinetics. Adv. Phys. 43, 357–459. doi:10.1080/00018739400101505
  • Bretherton, C. S. and Smolarkiewicz, P. K. 1989. Gravity Waves, Compensating Subsidence and Detrainment around Cumulus Clouds. J. Atmos. Sci. 46, 740–759. https://doi.org/10.1175/1520-0469%281989%29046%3C0740%3AGWCSAD%3E2.0.CO%3B2
  • Bretherton, C. S. and Wyant, M. C. 1997. Moisture Transport, Lower-Tropospheric Stability, and Decoupling of Cloud-Topped Boundary Layers. J. Atmos. Sci. 54, 148–167. https://doi.org/10.1175/1520-0469%281997%29054%3C0148%3AMTLTSA%3E2.0.CO%3B2
  • Bretherton, C. S., Blossey, P. N. and Khairoutdinov, M. 2005. An energy-balance analysis of deep convective self-aggregation above uniform SST. J. Atmos. Sci. 62, 4273–4292. doi:10.1175/JAS3614.1
  • Charney, J. G., Arakawa, A., Baker, D. J. and Bolin, B. 1979. Carbon dioxide and climate: a scientific assessment. National Research Council.
  • Coppin, D. and Bony, S. 2015. Physical mechanisms controlling the initiation of convective self-aggregation in a general circulation model. J. Adv. Model. Earth Syst. 7, 2060–2078. doi:10.1002/2015MS000571
  • Coppin, D. and Bony, S. 2017. Internal variability in a coupled general circulation model in radiative-convective equilibrium. Geophys. Res. Lett. 44, 5142–5149. doi:10.1002/2017GL073658
  • Coppin, D. and Bony, S. 2018. On the interplay between convective aggregation, surface temperature gradients, and climate sensitivity. J. Adv. Model. Earth Syst. 10, 3123–3138. doi:10.1029/2018MS001406
  • Craig, G. C. and Mack, J. M. 2013. A coarsening model for self-organization of tropical convection. J. Geophys. Res. Atmos. 118, 8761–8769. doi:10.1002/jgrd.50674
  • Dommenget, D. 2010. The slab ocean el niño. Geophys. Res. Lett. 37, n/a.
  • Gregory, J. M., Andrews, T. and Good, P. 2015. The inconstancy of the transient climate response parameter under increasing CO2. Phil. Trans. R Soc. A 373, 20140417. doi:10.1098/rsta.2014.0417
  • Ham, Y.-G., Kug, J.-S. and Park, J.-Y. 2013. Two distinct roles of Atlantic SSTS in enso variability: North tropical Atlantic SST and Atlantic Niño. Geophys. Res. Lett. 40, 4012–4017. doi:10.1002/grl.50729
  • Held, I. M., Hemler, R. S. and Ramaswamy, V. 1993. Radiative convective equilibrium with explicit 2-dimensional moist convection. J. Atmos. Sci. 50, 3909–3927. https://doi.org/10.1175/1520-0469%281993%29050%3C3909%3ARCEWET%3E2.0.CO%3B2
  • Hohenegger, C. and Stevens, B. 2016. Coupled radiative convective equilibrium simulations with explicit and parameterized convection. J. Adv. Model. Earth Syst. 8, 1468–1482. Sept. doi:10.1002/2016MS000666
  • Holloway, C. E. and Woolnough, S. J. 2016. The sensitivity of convective aggregation to diabatic processes in idealized radiative-convective equilibrium simulations. J. Adv. Model. Earth Syst. 8, 166–195. doi:10.1002/2015MS000511
  • Klein, S. A. and Hartmann, D. L. 1993. The seasonal cycle of low stratiform clouds. J. Climate 6, 1587–1606. https://doi.org/10.1175/1520-0442%281993%29006%3C1587%3ATSCOLS%3E2.0.CO%3B2
  • Kluft, L., Dacie, S., Buehler, S. A., Schmidt, H. and Stevens, B. 2019. Re-examining the first climate models: Climate sensitivity of a modern radiative-convective equilibrium model. J. Climate 32, 8111–8125. doi:10.1175/JCLI-D-18-0774.1
  • Luo, J.-J., Liu, G., Hendon, H., Alves, O. and Yamagata, T. 2017. Inter-basin sources for two-year predictability of the multi-year la niña event in 2010–2012. Sci. Rep. 7, 163–167.
  • Manabe, S. and Wetherald, R. T. 1967. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259. https://doi.org/10.1175/1520-0469%281967%29024%3C0241%3ATEOTAW%3E2.0.CO%3B2
  • Manneville, P. 2010. Instabilities, Chaos and Turbulence. Imperial College Press, London. 2nd ed. doi:10.1142/p642
  • Mauritsen, T., Bader, J., Becker, T., Behrens, J., Bittner, M., and co-authors. 2019. Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1.2) and its response to increasing CO2. J. Adv. Model. Earth Syst. 11, 998–1038. doi:10.1029/2018MS001400
  • Mikhailov, A. S. and Loskutov, A. Y. 1996. Foundations of Synergetics II. Springer, Berlin, Heidelberg.
  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J. and Clough, S. A. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102, 16663–16682. doi:10.1029/97JD00237
  • Muller, C. J. and Held, I. M. 2012. Detailed investigation of the self-aggregation of convection in cloud-resolving simulations. J. Atmos. Sci. 69, 2551–2565. doi:10.1175/JAS-D-11-0257.1
  • Nakajima, K. and Matsuno, T. 1988. Numerical experiments concerning the origin of cloud clusters in the tropical atmosphere. J. Meteorol. Soc. Japan 66, 309–329. doi:10.2151/jmsj1965.66.2_309
  • O’Neill, P., Nicolaides, D., Honnery, D. and Soria, J. 2004. Autocorrelation functions and the determination of integral length with reference to experimental and numerical data. In 15th Australasian Fluid Mechanics Conference.
  • Pincus, R. and Stevens, B. 2013. Paths to accuracy for radiation parameterizations in atmospheric models. J. Adv. Model. Earth Syst. 5, 225–233. doi:10.1002/jame.20027
  • Popke, D., Stevens, B. and Voigt, A. 2013. Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J. Adv. Model. Earth Syst. 5, 1–14. doi:10.1029/2012MS000191
  • Ramanathan, V. and Coakley, J. 1978. Climate modeling through radiative-convective models. Rev. Geophys. 16, 465–489. doi:10.1029/RG016i004p00465
  • Rädel, G., Mauritsen, T., Stevens, B., Dommenget, D., Matei, D. and co-authors. 2016. Amplification of El Niño by cloud longwave coupling to atmospheric circulation. Nature Geosci. 9, 106–110. doi:10.1038/ngeo2630
  • Reed, K. A., Medeiros, B., Bacmeister, J. T. and Lauritzen, P. H. 2015. Global radiative–convective equilibrium in the community atmosphere model, version 5. J. Atmos. Sci. 72, 2183–2197. doi:10.1175/JAS-D-14-0268.1
  • Riehl, H., Yeh, T. C., Malkus, J. S. and la Seur, N. E. 1951. The north-east trade of the pacific ocean. Quart J. Royal Met. Soc. 77, 598–626. doi:10.1002/qj.49707733405
  • Sobel, A. H. and Bretherton, C. S. 2000. Modeling Tropical Precipitation in a Single Column. J. Climate 13, 4378–4392. https://doi.org/10.1175/1520-0442%282000%29013%3C4378%3AMTPIAS%3E2.0.CO%3B2
  • Stevens, B. 2007. On the growth of layers of nonprecipitating cumulus convection. J. Atmos. Sci. 64, 2916–2930. doi:10.1175/JAS3983.1
  • Stevens, B., Drotos, G., Becker, T. and Mauritsen, T. 2019. Chapter 9 - Tropics as tempest. In V. Venugopal, J. Sukhatme, R. Murtugudde, and R. Roca (eds.), Tropical Extremes, 299–310. Elsevier, Amterdam.
  • Strube, H. W. 1985. A generalization of correlation functions and the Wiener-Khinchin theorem. Signal Processing 8, 63–74. doi:10.1016/0165-1684(85)90089-1
  • Tompkins, A. M. and Craig, G. C. 1998. Radiative-convective equilibrium in a three-dimensional cloud-ensemble model. QJ. Royal Met. Soc. 124, 2073–2097.
  • Wing, A. A. and Cronin, T. W. 2016. Self-aggregation of convection in long channel geometry. Quart J Royal Meteorol. Soc. 142, 1–15. doi:10.1002/qj.2628
  • Wing, A. A. and Emanuel, K. A. 2014. Physical mechanisms controlling self-aggregation of convection in idealized numerical modeling simulations. J. Adv. Model. Earth Syst. 6, 59–74. doi:10.1002/2013MS000269
  • Wing, A. A., Emanuel, K., Holloway, C. E. and Muller, C. 2017. Convective self-aggregation in numerical simulations: A review. Surv. Geophys. 27, 4391–4325. Feb.
  • Wing, A. A., Reed, K. A., Satoh, M., Stevens, B., Bony, S. and co-authors. 2018. Radiative–convective equilibrium model intercomparison project. Geosci. Model Dev. 11, 793–813. doi:10.5194/gmd-11-793-2018