1,213
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Evaluations of Uncertainty and Sensitivity in Soil Moisture Modeling on the Tibetan Plateau

, &
Pages 1-16 | Received 31 May 2019, Accepted 05 Dec 2019, Published online: 20 Dec 2019

References

  • Bastidas, L. A., Hogue, T. S., Sorooshian, S., Gupta, H. V. and Shuttleworth, W. J. 2006. Parameter sensitivity analysis for different complexity land surface models using multicriteria methods. J. Geophys. Res. 111, D20101. doi:10.1029/2005JD006377
  • Bauser, H. H., Berg, D., Klein, O. and Roth, K. 2018. Inflation method for ensemble Kalman filter in soil hydrology. Hydrol. Earth Syst. Sci. 22, 4921–4934. doi:10.5194/hess-22-4921-2018
  • Bonan, G. B. 1996. Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and user`s guide. NCAR Tech. Note NCAR/TN-417+STR, 150 pp.
  • Chen, Y., Yang, K., Tang, W., Qin, J. and Zhao, L. 2012. Parameterizing soil organic carbon's impact on soil porosity and thermal parameters for Eastern Tibet grasslands. Sci. China Earth Sci. 55, 1001–1011. doi:10.1007/s11430-012-4433-0
  • Clapp, R. B. and Hornberger, G. M. 1978. Empirical equations for some soil hydraulic properties. Water Resour. Res. 14, 601–604. doi:10.1029/WR014i004p00601
  • Crossley, J. F., Polcher, J., Cox, P. M., Gedney, N. and Planton, S. 2000. Uncertainties linked to land-surface processes in climate change simulations. Clim. Dyn. 16, 949–961. doi:10.1007/s003820000092
  • Dai, Y. and Zeng, Q. 1997. A land surface model (IAP94) for climate studies part I: formulation and validation in off-line experiments. Adv. Atmos. Sci. 14, 433–460.
  • Dai, Y., Zeng, X., Dickinson, R. E., Baker, I., Bonan, G. B. et al. 2003. The common land model. Bull. Amer. Meteor. Soc. 84, 1013–1023. doi:10.1175/BAMS-84-8-1013
  • Deng, G., Zhu, Y., Gong, J., Chen, D., Wobus, R. and co-authors. 2016. The effects of land surface process perturbations in a global ensemble forecast system. Adv. Atmos. Sci. 33, 1199–1208. doi:10.1007/s00376-016-6036-8
  • Di, Z., Duan, Q., Wang, C., Ye, A., Miao, C. and co-authors. 2018. Assessing the applicability of WRF optimal parameters under the different precipitation simulations in the Greater Beijing Area. Clim. Dyn. 50, 1927–1948. doi:10.1007/s00382-017-3729-3
  • Dickinson, R. E., Henderson-Sellers, A., Kennedy, P. and Wilson, M. F. 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the Community Climate Model. NCAR Tech. Note NCAR/TN‐387+STR, 72 pp.
  • Duan, Q., Di, Z., Quan, J., Wang, C., Gong, W. et al. 2017. Automatic model calibration: a new way to improve numerical weather forecasting. Bull. Amer. Meteor. Soc. 98, 959–970. doi:10.1175/BAMS-D-15-00104.1
  • Duan, A., Wang, M., Lei, Y. and Cui, Y. 2013. Trends in summer rainfall over China associated with the Tibetan plateau sensible heat source during 1980–2008. J. Clim. 26, 261–275. doi:10.1175/JCLI-D-11-00669.1
  • Duda, J. D., Wang, X. and Xue, M. 2017. Sensitivity of convection-allowing forecasts to land surface model perturbations and implications for ensemble design. Monthly Weather Rev. 145, 2001–2025. doi:10.1175/MWR-D-16-0349.1
  • Gan, Y., Liang, X.-Z., Duan, Q., Choi, H. I., Dai, Y. and co-authors. 2015. Stepwise sensitivity analysis from qualitative to quantitative: application to the terrestrial hydrological modeling of a Conjunctive Surface-Subsurface Process (CSSP) land surface model. J. Adv. Model. Earth Syst. 7, 648–669. doi:10.1002/2014MS000406
  • Gao, Y., Li, K., Chen, F., Jiang, Y. and Lu, C. 2015. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau. J. Geophys. Res. Atmos. 120, 9258–9278. doi:10.1002/2015JD023404
  • Gao, Y., Xiao, L., Chen, D., Chen, F., Xu, J. and co-authors. 2017. Quantification of the relative role of land-surface processes and large-scale forcing in dynamic downscaling over the Tibetan Plateau. Clim. Dyn. 48, 1705–1721. doi:10.1007/s00382-016-3168-6
  • Gupta, H. V., Bastidas, L. A., Sorooshian, S., Shuttleworth, W. J. and Yang, Z. L. 1999. Parameter estimation of a land surface scheme using multicriteria methods. J. Geophys. Res. 104, 19491–19503. doi:10.1029/1999JD900154
  • Huang, J., Fu, Q., Zhang, W., Wang, X., Zhang, R. and co-authors. 2011. Dust and Black Carbon in Seasonal Snow Across Northern China. Bull. Amer. Meteor. Soc. 92, 175–181. doi:10.1175/2010BAMS3064.1
  • Jackson, C., Xia, Y., Sen, M. K. and Stoffa, P. L. 2003. Optimal parameter and uncertainty estimation of a land surface model: a case study using data from Cabauw, Netherlands. J. Geophys. Res. 108, 4583. doi:10.1029/2002JD002991
  • Koike, T., Yasunari, T., Wang, J. and Yao, T. 1999. GAME-Tibet IOP summary report. In: Proceeding of the 1st International Workshop on GAME-Tibet, Xi’an, China, 11–13 January, 1–2.
  • Kumar, A., Chen, F., Barlage, M., Ek, M. B. and Niyogi, D. 2014. Assessing Impacts of Integrating MODIS Vegetation Data in the Weather Research and Forecasting (WRF) Model Coupled to Two Different Canopy-Resistance Approaches. J. Appl. Meteor. Climatol. 53, 1362–1380. doi:10.1175/JAMC-D-13-0247.1
  • Li, J., Duan, Q. Y., Gong, W., Ye, A., Dai, Y. and co-authors. 2013. Assessing parameter importance of the Common Land Model based on qualitative and quantitative sensitivity analysis. Hydrol. Earth Syst. Sci. 17, 3279–3293. doi:10.5194/hess-17-3279-2013
  • Li, Y., Liu, X. and Li, W. P. 2012. Numerical simulation of land surface process at different underlying surfaces in Tibetan plateau. Plateau Meteorol. 31, 581–591. (in Chinese)
  • Liu, S. and Lin, Z. 2005. Validation of common land model using field experiment data over typical land cover types in East Asia. Clim. Environ. Res. 10, 684–699. (in Chinese)
  • Liu, Y., Wu, G., Hong, J., Dong, B., Duan, A. and co-authors. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: II. Change. Clim. Dyn. 39, 1183–1195. doi:10.1007/s00382-012-1335-y
  • Liu, L., Zhang, R. and Zuo, Z. 2017. Effect of spring precipitation on summer precipitation in Eastern China: role of soil moisture. J. Clim. 30, 9183–9194. doi:10.1175/JCLI-D-17-0028.1
  • Luo, Q., Lv, S., Zhang, Y., Hu, Z., Ma, Y. and co-authors. 2008. Simulation analysis on land surface process of BJ site of central Tibetan Plateau using CoLM. Plateau Meteorol. 27, 259–271. (in Chinese)
  • MacLeod, D. A., Cloke, H. L., Pappenberger, F. and Weisheimer, A. 2016. Improved seasonal prediction of the hot summer of 2003 over Europe through better representation of uncertainty in the land surface. QJR. Meteorol. Soc. 142, 79–90. doi:10.1002/qj.2631
  • Meng, X. and Fu, Z. 2009. Comparative evaluation of land surface models BATS, LSM, and CoLM at Tongyu Station in Semi-arid Area. Clim. Environ. Res. 14, 352–362. in Chinese)
  • Mu, M., Duan, W., Wang, Q. and Zhang, R. 2010. An extension of conditional nonlinear optimal perturbation approach and its applications. Nonlin. Process. Geophys. 17, 211–220. doi:10.5194/npg-17-211-2010
  • Mu, M., Zhou, F. and Wang, H. 2009. A method for identifying the sensitive areas in targeted observations for tropical cyclone prediction: conditional nonlinear optimal perturbation. Mon. Wea. Rev. 137, 1623–1639. doi:10.1175/2008MWR2640.1
  • Orth, R., Dutra, E. and Pappenberger, F. 2016. Improving weather predictability by including land surface model parameter uncertainty. Monthly Weather Rev. 144, 1551–1569. doi:10.1175/MWR-D-15-0283.1
  • Peng, F., Mu, M. and Sun, G. 2017. Responses of soil moisture to climate change based on projections by the end of the 21st century under the high emission scenario in the ‘Huang–Huai–Hai Plain’ region of China. J. Hydro-Environ. Res. 14, 105–118. doi:10.1016/j.jher.2016.10.003
  • Pitman, A. J. 1994. Assessing the sensitivity of a land-surface scheme to the parameter values using a single column model. J. Clim. 7, 1856–1869. doi:10.1175/1520-0442(1994)007<1856:ATSOAL>2.0.CO;2
  • Pitman, A. J. 2003. The evolution of, and revolution in, land surface schemes designed for climate models. Int. J. Climatol. 23, 479–510. doi:10.1002/joc.893
  • Quan, J., Di, Z., Duan, Q., Gong, W., Wang, C. and co-authors. 2016. An evaluation of parametric sensitivities of different meteorological variables simulated by the WRF model. QJR. Meteorol. Soc. 142, 2925–2934. doi:10.1002/qj.2885
  • Rosero, E., Yang, Z.-L., Wagener, T., Gulden, L. E., Yatheendradas, S. and co-authors. 2010. Quantifying parameter sensitivity, interaction, and transferability in hydrologically enhanced versions of the Noah land surface model over transition zones during the warm season. J. Geophys. Res. 115, D03106.
  • Rosolem, R., Gupta, H. V., Shuttleworth, W. J., de Gonçalves, L. G. G. and Zeng, X. 2013. Towards a comprehensive approach to parameter estimation in land surface parameterization schemes. Hydrol. Process. 27, 2075–2097. doi:10.1002/hyp.9362
  • Santanello, J. A., Kumar, S. V., Peters-Lidard, C. D., Harrison, K. and Zhou, S. 2013. Impact of land model calibration on coupled land–atmosphere prediction. J. Hydrometeorol. 14, 1373–1400. doi:10.1175/JHM-D-12-0127.1
  • Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B. and co-authors. 2010. Investigating soil moisture–climate interactions in a changing climate: a review. Earth-Sci. Rev. 99, 125–161. doi:10.1016/j.earscirev.2010.02.004
  • Shi, Y., Davis, K. J., Zhang, F., Duffy, C. J. and Yu, X. 2015. Parameter estimation of a physically-based land surface hydrologic model using an ensemble Kalman filter: a multivariate real-data experiment. Adv. Water Resour. 83, 421–427. doi:10.1016/j.advwatres.2015.06.009
  • Storn, R. and Price, K. 1997. Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359. doi:10.1023/A:1008202821328
  • Sud, Y. C. and Smith, W. E. 1985. Influence of local land-surface processes on the Indian monsoon: a numerical study. J. Clim. Appl. Meteorol. 24, 1015–1036. doi:10.1175/1520-0450(1985)024<1015:IOLLSP>2.0.CO;2
  • Sun, G. and Mu, M. 2011. Nonlinearly combined impacts of initial perturbation from human activities and parameter perturbation from climate change on the grassland ecosystem. Nonlin. Process. Geophys. 18, 883–893. doi:10.5194/npg-18-883-2011
  • Sun, G. and Mu, M. 2012. Responses of soil carbon variation to climate variability in China using the LPJ model. Theor. Appl. Climatol. 110, 143–153. doi:10.1007/s00704-012-0619-9
  • Sun, G. and Mu, M. 2013. Understanding variations and seasonal characteristics of net primary production under two types of climate change scenarios in China using the LPJ model. Clim. Change 120, 755–769. doi:10.1007/s10584-013-0833-1
  • Sun, G. and Mu, M. 2014. The analyses of the net primary production due to regional and seasonal temperature differences in eastern China using the LPJ model. Ecol. Model. 289, 66–76. doi:10.1016/j.ecolmodel.2014.06.021
  • Sun, G. and Mu, M. 2017. A new approach to identify the sensitivity and importance of physical parameters combination within numerical models using the Lund–Potsdam–Jena (LPJ) model as an example. Theor. Appl. Climatol. 128, 587–601. doi:10.1007/s00704-015-1690-9
  • Sun, G., Peng, F. and Mu, M. 2017. Uncertainty assessment and sensitivity analysis of soil moisture based on model parameter errors – results from four regions in China. J. Hydrol. 555, 347–360. doi:10.1016/j.jhydrol.2017.09.059
  • Sun, G., Peng, F. and Mu, M. 2017. Variations in soil moisture over the ‘Huang-Huai-Hai Plain’ in China due to temperature change using the CNOP-P method and outputs from CMIP5. Sci. China Earth Sci. 60, 1838–1853. doi:10.1007/s11430-016-9061-3
  • van der Velde, R., Su, Z., Ek, M., Rodell, M. and Ma, Y. 2009. Influence of thermodynamic soil and vegetation parameterizations on the simulation of soil temperature states and surface fluxes by the Noah LSM over a Tibetan plateau site. Hydrol. Earth Syst. Sci. 13, 759–777. doi:10.5194/hess-13-759-2009
  • Vrugt, J. A., Gupta, H. V., Nualláin, B. and Bouten, W. 2006. Real-time data assimilation for operational ensemble streamflow forecasting. J. Hydrometeor. 7, 548–565. doi:10.1175/JHM504.1
  • Wang, Z., Yang, S., Lau, N.-C. and Duan, A. 2018. Teleconnection between summer NAO and East China rainfall variations: a bridge effect of the Tibetan plateau. J. Clim. 31, 6433–6444. doi:10.1175/JCLI-D-17-0413.1
  • Wu, G., He, B., Duan, A., Liu, Y. and Yu, W. 2017. Formation and variation of the atmospheric heat source over the Tibetan Plateau and its climate effects. Adv. Atmos. Sci. 34, 1169–1184. doi:10.1007/s00376-017-7014-5
  • Xia, Y., Sen, M. K., Jackson, C. S. and Stoffa, P. L. 2004. Multidataset study of optimal parameter and uncertainty estimation of a land surface model with bayesian stochastic inversion and multicriteria method. J. Appl. Meteorol. 43, 1477–1497. doi:10.1175/JAM2145.1
  • Xie, Z., Hu, Z., Liu, H. et al. 2017. Evaluation of the surface energy exchange simulations of land surface model CLM4.5 in Alpine Meadow over the Qinghai-Xizang Plateau. Plateau Meteorol. 36, 1–12. in Chinese)
  • Xie, Z., Yuan, F., Duan, Q., Zheng, J., Liang, M. and co-authors. 2007. Regional parameter estimation of the VIC land surface model: methodology and application to river basins in China. J. Hydrometeor. 8, 447–468. doi:10.1175/JHM568.1
  • Xin, Y., Bian, L. and Zhang, X. 2006. The application of CoLM to arid region of northwest China and Qinghai-Xizang plateau. Plateau Meteorol. 25, 567–574.
  • Yang, K., Chen, Y. Y. and Qin, J. 2009. Some practical notes on the land surface modeling in the Tibetan Plateau. Hydrol. Earth Syst. Sci. 13, 687–701. doi:10.5194/hess-13-687-2009
  • Ye, D.-Z. and Wu, G.-X. 1998. The role of the heat source of the Tibetan Plateau in the general circulation. Meteorl. Atmos. Phys. 67, 181–198. doi:10.1007/BF01277509
  • Yu, Y., Mu, M. and Duan, W. 2012. Does model parameter error cause a significant “spring predictability barrier” for El Niño events in the Zebiak–Cane Model? J. Clim. 25, 1263–1277. doi:10.1175/2011JCLI4022.1
  • Zeng, X., Shaikh, M., Dai, Y., Dickinson, R. E. and Myneni, R. 2002. Coupling of the common land model to the NCAR community climate model. J. Clim. 15, 1832–1854. doi:10.1175/1520-0442(2002)015<1832:COTCLM>2.0.CO;2
  • Zhang, H., Hendricks Franssen, H. J., Han, X., Vrugt, J. A. and Vereecken, H. 2017. State and parameter estimation of two land surface models using the ensemble Kalman filter and the particle filter. Hydrol. Earth Syst. Sci. 21, 4927–4958. doi:10.5194/hess-21-4927-2017
  • Zhang, G., Zhou, G. and Chen, F. 2017. Analysis of parameter sensitivity on surface heat exchange in the Noah land surface model at a temperate desert steppe site in China. J. Meteorol. Res. 31, 1167–1182. doi:10.1007/s13351-017-7050-1
  • Zhang, G., Zhou, G., Chen, F., Barlage, M. and Xue, L. 2014. A trial to improve surface heat exchange simulation through sensitivity experiments over a desert steppe site. J. Hydrometeor. 15, 664–684. doi:10.1175/JHM-D-13-0113.1
  • Zhang, R. and Zuo, Z. 2011. Impact of spring soil moisture on surface energy balance and summer monsoon circulation over East Asia and precipitation in East China. J. Clim. 24, 3309–3322. doi:10.1175/2011JCLI4084.1
  • Zheng, H. and Yang, Z. L. 2016. Effects of soil-type datasets on regional terrestrial water cycle simulations under different climatic regimes. J. Geophys. Res. Atmos. 121, 14,387–14402. doi:10.1002/2016JD025187