3,177
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Multi-nested WRF simulations for studying planetary boundary layer processes on the turbulence-permitting scale in a realistic mesoscale environment

, , ORCID Icon, ORCID Icon, &
Pages 1-28 | Received 07 Aug 2019, Accepted 01 Apr 2020, Published online: 14 May 2020

References

  • Abdolghafoorian, A., Farhadi, L., Bateni, S. M., Margulis, S. and Xu, T. 2017. Characterizing the effect of vegetation dynamics on the bulk heat transfer coefficient to improve variational estimation of surface turbulent fluxes. J. Hydrometeor. 18, 321–333. doi:10.1175/JHM-D-16-0097.1
  • Balzarini, A., Angelini, F., Ferrero, L., Moscatelli, M., Perrone, M. G. and co-authors. 2014. Sensitivity analysis of PBL schemes by comparing WRF model and experimental data. Geosci. Model Dev. Discuss. 7, 6133–6171. doi:10.5194/gmdd-7-6133-2014
  • Bauer, H.-S., Weusthoff, T., Dorninger, M., Wulfmeyer, V., Schwitalla, T. and co-authors. 2011. Predictive skill of a subset of the D-PHASE multi-model ensemble in the COPS region. COPS special issue of the Q. Q. J. R. Meteorol. Soc. 137, 287–305. doi:10.1002/qj.715
  • Behrendt, A., Wulfmeyer, V., Hammann, E., Muppa, S. K. and Pal, S. 2015. Profiles of second to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer. First measurements with rotational Raman lidar. Atmos. Chem. Phys. 15, 5485–5500. doi:10.5194/acp-15-5485-2015
  • Beyrich, F., Leps, J.-P., Mauder, M., Bange, J., Foken, T. and co-authors. 2006. Area-averaged surface fluxes over the litfass region based on eddy-covariance measurements. Bound.-Lay. Meteorol. 121, 33–65. doi:10.1007/s10546-006-9052-x
  • Bou-Zeid, E., Meneveau, C. and Parlange, M. B. 2005. A scale-dependent Lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17, 025105. doi:10.1063/1.1839152
  • Buettner, G. 1998. The European CORINE land cover database. In: Proceedings of the ISPRS Commission VII Symposium. Budapest, September 1–4, pp. 633–638.
  • Buettner, G., Ferrare, G. and Jaffrain, G. 2002. CORINE land cover update 2000 – technical guidelines. European Environment Agency. Technical report 89. Online at: http://reports.eea.europe.eu/technical_report_2002.89/en.
  • Cai, X., Yang, Z.-L., Xia, Y., Huang, M., Wei, H. and co-authors. 2014. Assessment of simulated water balance from Noah, Noah-MP, CLM, and VIC over CONUS using the NLDAS testbed. J. Geophys. Res. Atmos. 119, 13,751–13770. doi:10.1002/2014JD022113
  • Chen, Q. and Tong, C. 2006. Investigation of three subgrid-scale stress and its production rate in a convective atmospheric boundary layer using measurement data. J. Fluid Mech. 547, 65–104. doi:10.1017/S0022112005007196
  • Chlond, A., Müller, F. and Sednev, I. 2004. Numerical simulation of the diurnal cycle of marine stratocumulus during FIRE - A LES and SCM modelling study. Q. J. R. Meteorol. Soc. 130, 3297–3321. doi:10.1256/qj.03.128
  • Chlond, A. and Wolkau, A. 2000. Large-eddy simulation of a nocturnal stratocumulus-topped marine atmospheric boundary layer: An uncertainty analysis. Bound. Lay. Meteorol. 95, 31–55. doi:10.1023/A:1002438701638
  • Chow, F. K., Street, R. L., Xue, M. and Ferziger, J. H. 2005. Explicit filtering and reconstruction turbulence modeling for large-eddy simulation of neutral boundary layer flow. J. Atmos. Sci. 62, 2058–2077. doi:10.1175/JAS3456.1
  • Cohen, A. E., Cavallo, S. M., Coniglio, M. C. and Brooks, H. E. 2015. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments. Weather Forecast. 30, 591–612. doi:10.1175/WAF-D-14-00105.1
  • Deardorff, J. W. 1974. Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Lay. Meteorol. 7, 199–226. doi:10.1007/BF00227913
  • De Kauwe, M. G., Medlyn, B. E., Knauer, J. and Williams, C. A. 2017. Ideas and perspectives: How coupled is the vegetation to the boundary layer? Biogeosciences 14, 4435–4453. doi:10.5194/bg-14-4435-2017
  • Di Girolamo, P., Cacciani, M., Summa, D., Scoccione, A., De Rosa, B. and co-authors. 2017. Characterization of boundary layer turbulent processes by the Raman lidar BASIL in the frame of HD(CP)2 observational prototype experiment. Atmos. Chem. Phys. 17, 745–767. doi:10.5194/acp-17-745-2017
  • Dipankar, A., Stevens, B., Heinze, R., Moseley, C., Zängl, G. and co-authors. 2015. Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst. 7, 963–986. doi:10.1002/2015MS000431
  • Efstathiou, G. A., Beare, R. J., Osborne, S. and Lock, A. P. 2016. Grey zone simulations of the morning convective boundary layer development. J. Geophys. Res. Atmos. 121, 4769–4782. doi:10.1002/2016JD024860
  • Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R. and co-authors. 2007. The shuttle radar topography mission. Rev. Geophys. 45, RG2004.
  • Feng, Z., Leung, L. R., Houze, R. A., Jr., Hagos, S., Hardin, J. and co-authors. 2018. Structure and evolution of mesoscale convective systems: Sensitivity to cloud microphysics in convection-permitting simulations over the United States. J. Adv. Model. Earth Syst. 10, 1470–1494. doi:10.1029/2018MS001305
  • Green, J. K., Konings, A. G., Alemohammad, S. H., Berry, J., Entekhabi, D. and co-authors. 2017. Regionally strong feedbacks between the atmosphere and terrestrial biosphere. Nat. Geosci. 10, 410–414. doi:10.1038/ngeo2957
  • Hammann, E., Behrendt, A., Le Mounier, F. and Wulfmeyer, V. 2015. Temperature profiling of the atmospheric boundary layer with rotational Raman lidar during the HD(CP)2 observational prototype experiment. Atmos. Chem. Phys. 15, 2867–2881. doi:10.5194/acp-15-2867-2015
  • Heinze, R., Dipankar, A., Carbajal Henken, C., Moseley, C., Sourdeval, O. and co-authors. 2017. Large-eddy simulations over Germany using ICON: A comprehensive evaluation. Q. J. R. Meteorol. Soc. 143, 69–100. doi:10.1002/qj.2947
  • Heus, T., van Heerwaarden, C. C., Jonker, H. J. J., Pier Siebesma, A., Axelsen, S. and co-authors. 2010. Formulation of the Dutch atmospheric large-eddy-simulation (DALES) and overview of its application. Geosci. Model Dev. 3, 415–444. doi:10.5194/gmd-3-415-2010
  • Hong, S.-Y., Noh, Y. and Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 134, 2318–2341. doi:10.1175/MWR3199.1
  • Hong, S.-Y., Park, H., Cheong, H.-B., Kim, J.-E. E., Koo, M.-S. and co-authors. 2013. The global/regional integrated model system (GRIMs). Asia-Pacific J. Atmos. Sci. 49, 219–243. doi:10.1007/s13143-013-0023-0
  • Honnert, R., Masson, V. and Couvreux, F. 2011. A diagnostic for evaluating the representation of turbulence in atmospheric models at the kilometric scale. J. Atmos. Sci. 68, 3112–3131. doi:10.1175/JAS-D-11-061.1
  • Honnert, R. and Masson, V. 2014. What is the smallest physically acceptable scale for 1D turbulence schemes? Front. Earth Sci. 2, 1–5.
  • Huang, M., Gao, Z., Miao, S. and Chen, F. 2019. Sensitivity of urban boundary layer simulations to urban canopy models and PBL schemes in Beijing. Meteorol. Atmos. Phys. 131, 1235–1248. doi:10.1007/s00703-018-0634-1
  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and co-authors. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 113, D13103. doi:10.1029/2008JD009944
  • Jankov, I., Grasso, L. D., Sengupta, M., Neiman, P. J., Zupanski, D. and co-authors. 2011. An evaluation of five ARW-WRF microphysics schemes using synthetic GOES imagery for an atmospheric river event affecting the California coast. J. Hydrometeor. 12, 618–633. doi:10.1175/2010JHM1282.1
  • Jarvis, A., Reuter, H., Nelson, A. and Guevara, E. 2008. Hole-filled seamless SRTM data v4, International Center for Tropical Agriculture (CIAT). Online at: http://srtm.csi.cigar.org
  • Jiménez, P. A., Dudhia, J., González-Rouco, J. F., Navarro, J., Montávez, J. P. and co-authors. 2012. A revised scheme for the WRF surface layer formulation. Mon. Weather Rev. 140, 898–918. doi:10.1175/MWR-D-11-00056.1
  • Jiménez, P. and Kosovic, B. 2016. Implementation and evaluation of a three dimensional PBL parameterization for simulations of the flow over complex terrain. In: 17th Annual WRF Users’ Workshop, National Center for Atmospheric Research, Boulder, Colorado.
  • Kirkil, G., Mirocha, J., Bou-Zeid, E., Chow, F. K. and Kosović, B. 2012. Implementation and evaluation of dynamic subfilter-scale stress models for large-eddy simulation using WRF. Mon. Weather Rev. 140, 266–284. doi:10.1175/MWR-D-11-00037.1
  • Kosovic, B. 1997. Subgrid-scale modeling for the large-eddy simulation of high Reynolds number boundary layers. J. Fluid Mech. 336, 151–182. doi:10.1017/S0022112096004697
  • Lenschow, D. H., Wulfmeyer, V. and Senff, C. 2000. Measuring second-through fourth-order moments in noisy data. J. Atmos. Oceanic Technol. 17, 1330–1347. doi:10.1175/1520-0426(2000)017<1330:MSTFOM>2.0.CO;2
  • Lilly, D. K. 1968. Models of cloud-topped mixed layers under a strong inversion. Q. J. R. Meteorol. Soc. 94, 292–309. doi:10.1002/qj.49709440106
  • Lin, T. and Cheng, F. 2016. Impact of soil moisture initialization and soil texture on simulated land–atmosphere interaction in Taiwan. J. Hydrometeor. 17, 1337–1355. doi:10.1175/JHM-D-15-0024.1
  • Macke, A., Seifert, P., Baars, H., Beekmans, C., Behrendt, A. and co-authors. 2017. The HD(CP)2 observational prototype experiment HOPE – An overview. Atmos. Chem. Phys. 17, 4887–4837. doi:10.5194/acp-17-4887-2017
  • Maronga, B., Gryschka, M., Heinze, R., Hoffmann, F., Kanani-Sühring, F. and co-authors. 2015. The parallelized large-eddy simulation model (PALM) version 4.0 for atmospheric and oceanic flows: Model formulation, recent developments, and future perspectives. Geosci. Model Dev. 8, 2515–2551. doi:10.5194/gmd-8-2515-2015
  • Martin, G. M., Milton, S. F., Senior, C. A., Brooks, M. E., Ineson, S. and co-authors. 2010. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Clim. 23, 5933–5957. doi:10.1175/2010JCLI3541.1
  • Martínez, I. R. and Chaboureau, P. 2018. Precipitation and mesoscale convective systems: Explicit versus parameterized convection over northern Africa. Mon. Weather Rev. 146, 797–812. doi:10.1175/MWR-D-17-0202.1
  • Mazzaro, L. J., Muñoz-Esparza, D., Lundquist, J. K. and Linn, R. R. 2017. Nested mesoscale-to-LES modeling of the atmospheric boundary layer in the presence of under-resolved convective structures. J. Adv. Model. Earth Syst. 9, 1795–1810. doi:10.1002/2017MS000912
  • Milovac, J., Ingwersen, J. and Warrach-Sagi, K. 2014a. Soil texture forcing data for the whole world for the weather research and forecasting (WRF) model of the University of Hohenheim (UHOH) based on the harmonized world soil database (HWSD) at 30 arc-second horizontal resolution. World Data Center for Climate (WDCC). doi:10.1594/WDCC/WRF_NOAH_HWSD_world_TOP_SOILTYP.
  • Milovac, J., Ingwersen, J. and Warrach-Sagi, K. 2014b. Top soil texture forcing data for the area of Germany for the Weather Research and Forecasting (WRF) model based on the Bodenübersichtskarte (BUK) at a scale of 1:1000000 (BUK1000) and provided by the University of Hohenheim (UHOH). World Data Center for Climate (WDCC). doi:10.1594/WDCC/WRF_NOAH_BUK_Ger_top_SOILTYP
  • Milovac, J., Warrach-Sagi, K., Behrendt, A., Späth, F., Ingwersen, J. and co-authors. 2016. Investigation of PBL schemes combining the WRF model simulations with scanning water vapor differential absorption lidar measurements. J. Geophys. Res. Atmos. 121, 624–649. doi:10.1002/2015JD023927
  • Mirocha, J., Kosovic, B. and Kirkil, G. 2014. Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the weather research and forecasting model. Mon. Weather Rev. 142, 806–831. doi:10.1175/MWR-D-13-00064.1
  • Mirocha, J., Lundquist, J. K. and Kosovic, B. 2010. Implementation of a non-linear subfilter turbulence stress model for large-eddy simulation in the advanced research WRF model. Mon. Weather Rev. 138, 4212–4228. doi:10.1175/2010MWR3286.1
  • Moeng, C. H. 1984. A large-eddy-simulation model for the study of the planetary boundary layer turbulence. J. Atmos. Sci. 41, 2052–2062. doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
  • Moeng, C. H., Dudhia, J., Klemp, J. and Sullivan, P. 2007. Examining two-way grid nesting for large eddy simulation of the PBL using the WRF model. Mon. Weather Rev. 135, 2295–2311. doi:10.1175/MWR3406.1
  • Morrison, H., Thompson, G. and Tatarskii, V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Weather Rev. 137, 991–1007. doi:10.1175/2008MWR2556.1
  • Muñoz-Esparza, D., Kosovic, B., Mirocha, J. and van Beeck, J. 2014. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Lay. Meteorol. 153, 409–440. doi:10.1007/s10546-014-9956-9
  • Muñoz-Esparza, D., Kosovic, B., van Beeck, J. and Mirocha, J. 2015. A stochastic perturbation method to generate inflow turbulence in large-eddy simulation models: Application to neutrally stratified atmospheric boundary layers. Phys. Fluids 27, 035102. doi:10.1063/1.4913572
  • Muñoz-Esparza, D., Lundquist, J. K., Sauer, J. A., Kosović, B. and Linn, R. R. 2017. Coupled mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: From weather to boundary-layer eddies. J. Adv. Model. Earth Syst. 9, 1572–1594. doi:10.1002/2017MS000960
  • Muñoz-Esparza, D., Sauer, J. A., Linn, R. R. and Kosovic, B. 2016. Limitations of one-dimensional PBL parameterizations in reproducing mountain-wave flows. J. Atmos. Sci. 73, 2603–2614. doi:10.1175/JAS-D-15-0304.1
  • Muppa, S. K., Behrendt, A., Späth, F., Wulfmeyer, V., Metzendorf, S. and co-authors. 2016. Turbulent humidity fluctuations in the convective boundary layer. Case studies using water vapor DIAL measurements. Bound.-Lay. Meteorol. 158, 43–66. doi:10.1007/s10546-015-0078-9
  • Nakayama, H., Tamura, T. and Abe, S. 2008. LES on plume dispersion in the convective boundary layer capped by a temperature inversion. J. Fluid Sci. Technol. 3, 519–532. doi:10.1299/jfst.3.519
  • Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B. and co-authors. 2011. The community Noah land surface model with multiparameterization (Noah-MP): Model description and evaluation with local-scale measurements. J. Geophys. Res. 116, D12109,
  • Palmer, T. N., Doblas-Reyes, F. J., Weisheimer, A. and Rodwell, M. J. 2008. Towards seamless prediction. Calibration of climate change projections using seasonal forecasts. Bull. Am. Meteorol. Soc. 89, 459–470. doi:10.1175/BAMS-89-4-459
  • Porté-Agel, F., Meneveau, C. and Parlange, M. B. 2000. A scale dependent dynamic model for large eddy simulation. Application to a neutral atmospheric boundary layer. J. Fluid Mech. 415, 261–284. doi:10.1017/S0022112000008776
  • Raasch, S. and Schröter, M. 2001. PALM – A large-eddy simulation model performing on massively parallel computers. Meteorologische Zeitschrift. 10, 363–372. doi:10.1127/0941-2948/2001/0010-0363
  • Raasch, S. and Franke, T. 2011. Structure and formation of dust devil-like vortices in the atmospheric boundary layer: A high-resolution numerical study. J. Geophys. Res. 116, D16120. doi:10.1029/2011JD016010
  • Reuter, H. I., Nelson, A. and Jarvis, A. 2007. An evaluation of void filling interpolation methods for SRTM data. Geogr. Inf. Sci. 21, 983–1008. doi:10.1080/13658810601169899
  • Santanello, J. A., Jr., Dirmeyer, P. A., Ferguson, C. R., Findell, K. L., Tawfik, A. B. and co-authors. 2018. Land-atmosphere interactions. The LoCo perspective. Bull. Am. Meteorol. Soc. 99, 1253–1272. doi:10.1175/BAMS-D-17-0001.1
  • Schwitalla, T., Bauer, H.-S., Wulfmeyer, V. and Aoshima, F. 2011. High-resolution simulation over central Europe: Assimilation experiments with WRF 3DVAR during COPS IOP9c. Q. J. R. Meteorol. Soc. 137, 156–175. doi:10.1002/qj.721
  • Schwitalla, T. and Wulfmeyer, V. 2014. Radar data assimilation experiments using the IPM WRF rapid update cycle. Meteorologische Zeitschrift. 23, 79–102. doi:10.1127/0941-2948/2014/0513
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M., Huang, X.-Y., Wang, W. and Powers, J.-G. 2008. A description of the advanced research WRF version 3. NCAR Technical Note TN-475 + STR, 113 pp.
  • Smagorinsky, J. 1963. General circulation experiments with the primitive equations. I: The basic experiment. Mon. Weather Rev. 91, 99–164. doi:10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  • Song, J. and Wang, Z., H. 2015. Interfacing urban land-atmosphere through coupled urban canopy and atmospheric models. Bound.-Lay. Meteorol. 154, 427–448. doi:10.1007/s10546-014-9980-9
  • Song, J., Wang, Z. H. and Wang, C. 2018. The regional impact of urban heat mitigation strategies on planetary boundary-layer dynamics over a semi-arid city. J. Geophys. Res. Atmos. 123, 6410–6422. doi:10.1029/2018JD028302
  • Späth, F., Behrendt, A., Muppa, S. K., Metzendorf, S., Riede, A. and co-authors. 2016. 3D water vapor field in the atmospheric boundary layer observed with scanning differential absorption lidar. Atmos. Meas. Tech. 9, 1701–1720. doi:10.5194/amt-9-1701-2016
  • Teixeira, J. C., Fallmann, J., Carvalho, A. C. and Rocha, A. 2019. Surface to boundary layer coupling in the urban area of Lisbon comparing different urban canopy models in WRF. Urban Clim. 28, 100454. doi:10.1016/j.uclim.2019.100454
  • Turner, D. D., Wulfmeyer, V., Berg, L. K. and Schween, J. H. 2014. Water vapor turbulence profiles in stationary continental convective mixed layers. J. Geophys. Res. Atmos. 119, 11,151–11165. doi:10.1002/2014JD022202
  • Weckwerth, T. M., Horst, T. W. and Wilson, J. W. 1999. An observational study of the evolution horizontal convective rolls. Mon. Weather Rev. 127, 2160–2179. doi:10.1175/1520-0493(1999)127<2160:AOSOTE>2.0.CO;2
  • Weckwerth, T. M., Parsons, D. B., Koch, S. E., Moore, J. A., LeMone, M. A. and co-authors. 2004. An overview of the international H2O project (IHOP_2002) and some preliminary highlights. Bull. Am. Meteorol. Soc. 85, 253–277. doi:10.1175/BAMS-85-2-253
  • Williams, I. N. and Torn, M. S. 2015. Vegetation controls on surface heat flux partitioning, and land-atmosphere coupling. Geophys. Res. Lett. 42, 9416–9424. doi:10.1002/2015GL066305
  • Woodhams, B. J., Birch, C. E., Marsham, J. H., Bain, C. L., Roberts, N. and co-authors. 2018. What is the added value of a convection-permitting model for forecasting extreme rainfall over tropical East Africa? Mon. Weather Rev. 146, 2757–2780. doi:10.1175/MWR-D-17-0396.1
  • Wolf, B., Chwala, C., Fersch, B., Garvelmann, J., Junkermann, W. and co-authors. 2017. The SCALEX campaign: Scale-crossing land-surface and boundary layer processes in the TERENO-prealpine observatory. Bull. Am. Meteorol. Soc. 98, 1217–1234. doi:10.1175/BAMS-D-15-00277.1
  • Wulfmeyer, V., Behrendt, A., Kottmeier, Ch, Corsmeier, U., Barthlott, C., Craig, G. C. and co-authors. 2011. The convective and orographically induced precipitation study (COPS): The scientific strategy, the field phase, and first highlights. Q. J. R. Meteorol. Soc. 137, 3–30. doi:10.1002/qj.752
  • Wulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P. and co-authors. 2015. A review of the remote sensing of lower-tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Rev. Geophys. 53, 819–895. doi:10.1002/2014RG000476
  • Wulfmeyer, V., Muppa, S. K., Behrendt, A., Hammann, E., Späth, F. and co-authors. 2016. Determination of convective boundary layer entrainment fluxes, dissipation rates, and the molecular destruction of variances: Theoretical description and a strategy for its confirmation with a novel lidar system synergy. J. Atmos. Sci. 73, 667–692. doi:10.1175/JAS-D-14-0392.1
  • Wulfmeyer, V., Turner, D. D., Baker, B., Banta, R., Behrendt, A. and co-authors. 2018. A new research approach for observing and characterizing land-atmosphere feedback. Bull. Am. Meteorol. Soc. 99, 1639– 1667. doi:10.1175/BAMS-D-17-0009.1
  • Wyngaard, J. C. 2004. Toward numerical modelling in the ‘Terra Incognita’. J. Atmos. Sci. 61, 1816–1826. doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2
  • Xiao, H., Endo, S., Wong, M., Skamarock, W. C., Klemp, J. B. and co-authors. 2015. Modification to WRF’s dynamical core to improve the treatment of moisture for large-eddy simulations. J. Adv. Model. Earth Syst. 7, 1627–1642. doi:10.1002/2015MS000532
  • Xu, H., Wang, M., Wang, Y. and Cai, W. 2018. Performance of WRF large eddy simulations in modeling the convective boundary layer over the Taklimakan desert, China. J. Meteorol. Res. 32, 1011–1025. doi:10.1007/s13351-018-8001-1
  • Zhou, B., Simon, J. S. and Chow, F. K. 2014. The convective boundary layer in the terra incognita. J. Atmos. Sci. 71, 2545–2563. doi:10.1175/JAS-D-13-0356.1
  • Zhou, B., Xue, M. and Zhu, K. 2017. A grid‐refinement‐based approach for modeling the convective boundary layer in the gray zone: a pilot study. J. Atmos. Sci. 74, 3497–3513. doi:10.1175/JAS-D-16-0376.1
  • Zhu, P. 2008a. A multiscale modeling system for coastal hurricane wind damage mitigation. Nat. Hazards 47, 577–591. doi:10.1007/s11069-008-9240-8
  • Zhu, P. 2008b. Simulation and parameterization of the turbulent transport in the hurricane boundary layer by large eddies. J. Geophys. Res. 113, 17104–17119.
  • Zhu, P., Albrecht, B. A., Ghate, V. P. and Zhu, Z. 2010. Multiple-scale simulation of stratocumulus clouds. J. Geophys. Res. 115, 23201–23220.
  • Zittis, G., Bruggeman, A., Camera, C., Hadjinicolaou, P. and Lelieveld, J. 2017. The added value of convection permitting simulations of extreme precipitation events over the eastern Mediterranean. Atmos. Res. 191, 20–33. doi:10.1016/j.atmosres.2017.03.002