1,323
Views
4
CrossRef citations to date
0
Altmetric
Research Article

On the contribution of internal climate variability to European future climate trends

ORCID Icon, , , , ORCID Icon, , & show all
Pages 1-17 | Received 23 Mar 2020, Accepted 22 Jun 2020, Published online: 31 Jul 2020

References

  • Arora, V. K. 2003. Simulating energy and carbon fluxes over winter wheat using coupled land surface and terrestrial ecosystem models. Agric. For. Meteorol. 118, 21–47. doi:10.1016/S0168-1923(03)00073-X
  • Arora, V. K., Scinocca, J. F., Boer, G. J., Christian, J. R., Denman, K. L. and co-authors. 2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 38, 1–6. doi:10.1029/2010GL046270
  • Bengtsson, L. and Hodges, K. I. 2019. Can an ensemble climate simulation be used to separate climate change signals from internal unforced variability? Clim. Dyn. 52, 3553–3573. doi:10.1007/s00382-018-4343-8
  • Bittner, M., Schmidt, H., Timmreck, C. and Sienz, F. 2016. Using a large ensemble of simulations to assess the Northern Hemisphere stratospheric dynamical response to tropical volcanic eruptions and its uncertainty. Geophys. Res. Lett. 43, 9324–9332. doi:10.1002/2016GL070587
  • Christian, J. R., Arora, V. K., Boer, G. J., Curry, C. L., Zahariev, K. and co-authors. 2010. The global carbon cycle in the CCCma earth system model CanESM1: preindustrial control simulation. J. Geophy. Res. 115, 1–20. doi:10.1029/2008JG000920
  • Dai, A. and Bloecker, C. E. 2019. Impacts of internal variability on temperature and precipitation trends in large ensemble simulations by two climate models. Clim. Dyn. 52, 289–306. doi:10.1007/s00382-018-4132-4
  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P. and co-authors. 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi:10.1002/qj.828
  • Deser, C., Knutti, R., Solomon, S. and Phillips, A. S. 2012. Communication of the role of natural variability in future North American climate. Nat. Clim. Change 2, 775–779. doi:10.1038/nclimate1562
  • Deser, C., Phillips, A., Bourdette, V. and Teng, H. 2012. Uncertainty in climate change projections: the role of internal variability. Clim. Dyn. 38, 527–546. doi:10.1007/s00382-010-0977-x
  • Deser, C., Phillips, A. S., Alexander, M. A. and Smoliak, B. V. 2014. Projecting North American climate over the next 50 years: uncertainty due to internal variability. J. Clim. 27, 2271–2296. doi:10.1175/JCLI-D-13-00451.1
  • Fischer, E. M., Sedlacek, J., Hawkins, E. and Knutti, R. 2014. Models agree on forced response pattern of precipitation and temperature extremes. Geophys. Res. Lett. 41, 8554–8562. doi:10.1002/2014GL062018
  • Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J. and co-authors. 2013. Climate and carbon cycle changes from 1850 to 2100 in MPI‐ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 5, 572–597. doi:10.1002/jame.20038
  • Hawkins, E. 2011. Our evolving climate: communicating the effects of climate variability. Weather 66, 175–179. doi:10.1002/wea.761
  • Hawkins, E. and Sutton, R. 2009. The potential to narrow uncertainties in regional climate predictions. Bull. Am. Meteor. Soc. 90, 1095–1107. doi:10.1175/2009BAMS2607.1
  • Hawkins, E. and Sutton, R. 2012. Time of emergence of climate signals. Geophys. Res. Lett. 39, 1–6. doi:10.1029/2011GL050087
  • Hedemann, C., Mauritsen, T., Jungclaus, J. and Marotzke, J. 2017. The subtle origins of surface-warming hiatuses. Nat. Clim. Change 7, 336–339. doi:10.1038/nclimate3274
  • Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B. and co-authors. 2015. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature 522, 465–469. doi:10.1038/nature14550
  • Jahn, A., Kay, J. E., Holland, M. M. and Hall, D. M. 2016. How predictable is the timing of a summer ice-free Arctic? Geophys. Res. Lett. 43, 9113–9120. doi:10.1002/2016GL070067
  • Jönsson, P. and Bärring, L. 1994. Zonal index variations, 1899–1992: links to air temperature in southern Scandinavia. Geogr. Ann. Ser. A Phys. Geogr. 76, 207–219.
  • Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J. and co-authors. 2013. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 5, 422–446. doi:10.1002/jame.20023
  • Kirchmeier-Young, M. C., Zwiers, F. W. and Gillett, N. P. 2017. Attribution of extreme events in Arctic sea ice extent. J. Clim. 30, 553–571. doi:10.1175/JCLI-D-16-0412.1
  • Koenigk, T., Gao, Y., Gastineau, G., Keenlyside, N., Nakamura, T. and co-authors. 2019. Impact of Arctic sea ice variations on winter temperature anomalies in northern hemispheric land areas. Clim. Dyn. 52, 3111–3137. doi:10.1007/s00382-018-4305-1
  • Knutti, R. and Sedlacek, J. 2013. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Change 3, 369–373. doi:10.1038/nclimate1716
  • Maher, N., Milinski, S., Suarez‐Gutierrez, L., Botzet, M., Dobrynin, M. and co-authors. 2019. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model. Earth Syst. 11, 2050–2021. doi:10.1029/2019MS001639
  • Marotzke, J. 2019. Quantifying the irreducible uncertainty in near-term climate projections. Wiley Interdiscip. Rev. Clim. Change 10, e563. doi:10.1002/wcc.563
  • Moberg, A. and Bergström, H. 1997. Homogenization of Swedish temperature data. Part III: the long temperature records from Uppsala and Stockholm. Int. J. Climatol. 17, 667–699. doi:10.1002/(SICI)1097-0088(19970615)17:7<667::AID-JOC115>3.0.CO;2-J
  • Moberg, A., Jones, P. D., Barriendos, M., Bergström, H., Camuffo, D. and co-authors. 2000. Day‐to‐day temperature variability trends in 160‐ to 275‐year‐long European instrumental records. J. Geophys. Res. 105, 22849–22868. doi:10.1029/2000JD900300
  • Mori, M., Watanabe, M., Shiogama, H., Inoue, J. and Kimoto, M. 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873. doi:10.1038/ngeo2277
  • Niederdrenk, A. L. and Notz, D. 2018. Arctic sea ice in a 1.5 °C warmer world. Geophys. Res. Lett. 45, 1963–1971. doi:10.1002/2017GL076159
  • Notz, D., Haumann, F. A., Haak, H., Jungclaus, J. H. and Marotzke, J. 2013. Arctic sea-ice evolution as modeled by Max Planck Institute for Meteorology’s Earth system model. J. Adv. Modell. Earth Syst. 5, 1–22.
  • Ogawa, F., Keenlyside, N., Gao, Y., Koenigk, T., Yang, S. and co-authors. 2018. Evaluating impacts of recent Arctic sea ice loss on the northern hemisphere winter climate change. Geophys. Res. Lett. 45, 3255–3263. doi:10.1002/2017GL076502
  • Rondeau-Genesse, G. and Braun, M. 2019. Impact of internal variability on climate change for the upcoming decades: analysis of the CanESM2-LE and CESM-LE large ensembles. Clim. Change 156, 299–314. doi:10.1007/s10584-019-02550-2
  • Sigmond, M. and Fyfe, J. 2016. Tropical Pacific impacts on cooling North American winters. Nat. Clim. Change 6, 970–974. doi:10.1038/nclimate3069
  • Suárez-Gutiérrez, L., Chao, L., Müller, W. A. and Marotzke, J. 2018. Internal variability in European summer temperatures at 1.5 °C and 2 °C of global warming. Environ. Res. Lett. 13, 064026. doi:10.1088/1748-9326/aaba58
  • Suárez-Gutiérrez, L., Li, C., Thorne, P. W. and Marotzke, J. 2017. Internal variability in simulated and observed tropical tropospheric temperature trends. Geophys. Res. Lett. 44, 5709–5719. doi:10.1002/2017GL073798
  • Taylor, K. E., Stouffer, R. J. and Meehl, G. A. 2012. An overview of CMIP5 and the experiment design. Bull. Am. Meteor. Soc. 93, 485–498. doi:10.1175/BAMS-D-11-00094.1
  • Vihma, T. 2014. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. 35, 1175–1214. doi:10.1007/s10712-014-9284-0
  • von Storch, H. and Zwiers, F. 1999. Statistical Analysis in Climate Research. Cambridge University Press, Cambridge.
  • von Trentini, F., Leduc, M. and Ludwig, R. 2019. Assessing natural variability in RCM signals: comparison of a multi model EURO-CORDEX ensemble with a 50-member single model large ensemble. Clim. Dyn. 53, 1963–1979. doi:10.1007/s00382-019-04755-8