8,650
Views
1
CrossRef citations to date
0
Altmetric
Research Article

On the use of reduced grids in conjunction with the Equator-Pole grid system

Pages 1-12 | Received 20 Feb 2020, Accepted 29 May 2020, Published online: 15 Jul 2020

References

  • Allen, T. and Zerroukat, M. 2015. A moist Boussinesq shallow water equations set for testing atmospheric models. J. Comput. Phys. 290, 55–72.
  • Allen, T. and Zerroukat, M. 2016. A deep non-hydrostatic compressible atmospheric model on Yin-Yang grid. J. Comput. Phys. 319, 44–60. doi:10.1016/j.jcp.2016.05.022
  • Bao, L., Nair, R. D. and Tufo, H. M. 2014. A mass and momentum flux-form higher-order discontinuous Galerkin shallow water model on the cubed-sphere. J. Comput. Phys. 271, 224–243. doi:10.1016/j.jcp.2013.11.033
  • Chen, C., Li, X., Shen, X. and Xiao, F. 2014. Global shallow water models based on multi-moment constrained finite volume method and three quasi-uniform spherical grids. J. Comput. Phys. 271, 191–223. doi:10.1016/j.jcp.2013.10.026
  • Gates, W. L. and Riegel, A. 1963. A study of numerical errors in the integration of barotropic flow on a spherical grid. J. Geophys. Res. 67, 406–423.
  • Giraldo, F. X. 2006. High-order triangle-based discontinuous Galerkin methods for hyperbolic equations on rotating sphere. J. Comput. Phys. 214, 447–465. doi:10.1016/j.jcp.2005.09.029
  • Hortal, M. and Simmons, A. J. 1991. Use of reduced Gaussian grids in spectral models. Mon. Wea. Rev. 119, 1057–1074. doi:10.1175/1520-0493(1991)119<1057:UORGGI>2.0.CO;2
  • Kageyama, A. and Sato, T. 2004. The Yin-Yang grid: an overset grid in spherical geometry. Geochem. Geophys. Geosyst. 5, 1–15.
  • Kreiss, H.-O. and Oliger, J. 1972. Comparison of accurate methods for the integration of hyperbolic equations. Tellus A 24, 199–215.
  • Kurihara, Y. 1965. Integration of the primitive equations on a spherical grid. Mon. Weather Rev. 95, 399–415.
  • Läuter, M., Handorf, D. and Dethloff, K. 2005. Unsteady analytical solutions of the spherical shallow water equations. J. Comput. Phys. 210, 535–553. doi:10.1016/j.jcp.2005.04.022
  • Läuter, M., Giraldo, F. X., Handorf, D. and Dethloff, K. 2008. A discontinuous Galerkin method for the shallow water equations using spherical triangular coordinates. J. Comput. Phys. 227, 10226–10243. doi:10.1016/j.jcp.2008.08.019
  • Layton, A. T. 2002. Cubic spline collocation methods for the shallow water equations on the sphere. J. Comput. Phys. 179, 578–592. doi:10.1006/jcph.2002.7075
  • Li, J. G. 2018. Shallow water equations on a spherical multiple-cell grid. Q. J. R. Meteorol. Soc. 144, 1–12. doi:10.1002/qj.3139
  • Nair, R. D., Thomas, S. J. and Loft, R. D. 2005. A discontinuous Galerkin transport scheme on the cubed sphere. Mon. Wea. Rev. 133, 814–828. doi:10.1175/MWR2890.1
  • Pudykiewics, J. A. 2011. On numerical solution of the shallow water equations with chemical reactions on icosahedral geodesic grid. J. Comput. Phys. 230, 1956–1991. doi:10.1016/j.jcp.2010.11.045
  • Putman, W. M. and Lin, S.-J. 2007. Finite-volume transport on various cubed-sphere grids. J. Comput. Phys. 227, 55–78. doi:10.1016/j.jcp.2007.07.022
  • Qaddouri, A. and Lee, V. and 2011. The Canadian global environmental multi scale model on the Yin-Yang grid system. Q. J. R. Meteorol. Soc. 137, 1913–1926. doi:10.1002/qj.873
  • Ronchi, C., Iacono, R. and Paolucci, P. S. 1996. The cubed sphere: a new method for the solution of partial differential equations in spherical geometry. J. Comput. Phys. 124, 93–114. doi:10.1006/jcph.1996.0047
  • Sadourny, R. 1972. Conservative finite-differencing of the primitive equations on quasi-uniform spherical grids. Mon. Wea. Rev. 100, 136–144. doi:10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2
  • Staniforth, A. J. and Thuburn, J. 2012. Horizontal grids for global weather and climate prediction models: a review. Q. J. R. Meteorol. Soc. 138, 1–26. doi:10.1002/qj.958
  • Starius, G. 2014. A solution to the pole problem for the shallow water equations on the sphere. TWMS J. Pure Appl. Math. 5, 152–170.
  • Starius, G. 2018. ‘The Equator-Pole grid system’: An overset grid system for the sphere, with an optimal uniformity property. Tellus A 70, 1–14.. doi:10.1080/16000870.2018.1541373
  • Tolstykh, M. A. and Shashkin, V. V. 2012. Vorticity-divergence mass-conserving semi-Lagrangian shallow water model using the reduced grid on the sphere. J. Comput. Phys. 231, 4205–4233. doi:10.1016/j.jcp.2012.02.016
  • Ullrich, P. A., Jablonowski, C. and van Leer, B. 2010. High-order finite-volume methods for the shallow-water equations on the sphere. J. Comput. Phys. 229, 6104–6134. doi:10.1016/j.jcp.2010.04.044
  • Williamson, D. L. 1968. Integration of the barotropic vorticity equation on a spherical geodesic grid. Tellus 20, 642–653.
  • Williamson, D. L. 2007. The evolution of dynamical cores for global atmospheric model. J. Meteorol. Soc. Jpn. 85B, 241–269. doi:10.2151/jmsj.85B.241
  • Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R. and Swarztrauber, P. N. 1992. A standard test set for numerical approximation to the shallow water equations in spherical geometry. J. Comput. Phys. 102, 211–224. doi:10.1016/S0021-9991(05)80016-6