1,629
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Three-dimensional potential vorticity structures for extreme precipitation events on the convective scale

, &
Pages 1-20 | Received 14 Apr 2020, Accepted 13 Aug 2020, Published online: 03 Sep 2020

References

  • Bollmeyer, C., Keller, J., Ohlwein, C., Wahl, S., Crewell, S. and co-authors. 2015. Towards a high-resolution regional reanalysis for the european cordex domain. Q. J. R. Meteorol. Soc. 141, 1–15. doi:10.1002/qj.2486
  • Cammas, J.-P., Pouponneau, B., Desroziers, G., Santurette, P., Joly, A. and co-authors. 1999. Fastex iop17 cyclone: Introductory synoptic study with field data. Q. J. R. Meteorol. Soc. 125, 3393–3414. doi:10.1002/qj.49712556114
  • Chagnon, J. M. and Gray, S. L. 2009. Horizontal potential vorticity dipoles on the convective storm scale. Q. J. R. Meteorol. Soc. 135, 1392–1408. doi:10.1002/qj.468
  • Conzemius, R. J. and Montgomery, M. T. 2009. Clarification on the Generation of Absolute and Potential Vorticity in Mesoscale Convective Vortices. Technical Report, Dept. of Meteorology, NAVAL Postgraduate School Monterey, CA.
  • Davies-Jones, R. 1984. Streamwise vorticity: The origin of updraft rotation in supercell storms. J. Atmos. Sci. 41, 2991–3006. doi:10.1175/1520-0469(1984)041<2991:SVTOOU>2.0.CO;2
  • Davis, C. A. 1992. Piecewise potential vorticity inversion. J. Atmos. Sci. 49, 1397–1411. doi:10.1175/1520-0469(1992)049<1397:PPVI>2.0.CO;2
  • Dee, D. P., Uppala, S. M., Simmons, A., Berrisford, P., Poli, P. and co-authors. 2011. The era-interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597. doi:10.1002/qj.828
  • Doms, G. and Baldauf, M. 2018. A Description of the Nonhydrostatic Regional Cosmo Model. Part I: Dynamics and Numerics. Technical Report, Deutscher Wetterdienst.
  • DWD. 2019. Wetterlexikon. Online at: https://www.dwd.de/DE/service/lexikon/Functions/glossar.html?lv2=101812&lv3=101906.
  • Ertel, H. 1942a. Ein neuer hydrodynamischer Wirbelsatz. Sonderdruck Aus Der Meteorologischen Z 8, 277–281.
  • Ertel, H. 1942b. On hydrodynamic eddy theorems. Physikalische Zeitschrift 43, 526–529.
  • Haynes, P. H. and McIntyre, M. E. 1987. On the evolution of vorticity and potential vorticity in the presence of diabatic heating and frictional or other forces. J. Atmos. Sci. 44, 828–841. doi:10.1175/1520-0469(1987)044<0828:OTEOVA>2.0.CO;2
  • Hittmeir, S. and Klein, R. 2018. Asymptotics for moist deep convection I: Refined scalings and self-sustaining updrafts. Theor. Comput. Fluid Dyn. 32, 137–164. doi:10.1007/s00162-017-0443-z
  • Hollmann, G. 1963. Ein vollständiges System hydrodynamischer Erhaltungssätze. Arch. Met. Geoph. Biokl. A 14, 1–13. doi:10.1007/BF02247751
  • Hoskins, B. J. and James, I. N. 2014. Fluid Dynamics of the Mid-Latitude Atmosphere. Oxford, UK: John Wiley & Sons.
  • Hoskins, B. J., McIntyre, M. E. and Robertson, A. W. 2007. On the use and significance of isentropic potential vorticity maps. Q. J. R. Meteorol. Soc. 111, 877–946. doi:10.1002/qj.49711147002
  • Jones, S. C. 1995. The evolution of vortices in vertical shear. I: Initially barotropic vortices. Q. J. R. Meteorol. Soc. 121, 821–851. doi:10.1002/qj.49712152406
  • Klein, R. 2010. Scale-dependent models for atmospheric flows. Annu. Rev. Fluid Mech. 42, 249–274. doi:10.1146/annurev-fluid-121108-145537
  • Klemp, J. B. 1987. Dynamics of tornadic thunderstorms. Annu. Rev. Fluid Mech. 19, 369–402. doi:10.1146/annurev.fl.19.010187.002101
  • Lilly, D. K. 1986. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. J. Atmos. Sci. 43, 126–140. doi:10.1175/1520-0469(1986)043<0126:TSEAPO>2.0.CO;2
  • Markowski, P. and Richardson, Y. 2011. Mesoscale Meteorology in Midlatitudes, Vol. 2. Oxford, UK: John Wiley & Sons.
  • Müller, A., Névir, P. and Klein, R. 2018. Scale dependent analytical investigation of the dynamic state index concerning the quasi-geostrophic theory. Math. Clim. Weather Forecast 4, 1–22. doi:10.1515/mcwf-2018-0001
  • Oertel, A., Boettcher, M., Joos, H., Sprenger, M. and Wernli, H. 2020. Potential vorticity structure of embedded convection in a warm conveyor belt and its relevance for the large-scale dynamics. Weather Clim. Dynam. 1, 127–153. doi:10.5194/wcd-1-127-2020
  • Pedlosky, J. 2013. Geophysical Fluid Dynamics. New York: Springer Science & Business Media.
  • Persson, P. O. G. 1995. Simulations of the potential vorticity structure and budget of fronts 87 iop8. Q. J. R. Meteorol. Soc. 121, 1041–1081. doi:10.1002/qj.49712152506
  • Pichler, H. 1997. Dynamik Der Atmosphäre. Berlin: Spektrum akademischer Verlag.
  • Plant, R., Craig, G. C. and Gray, S. 2003. On a threefold classification of extratropical cyclogenesis. Q. J. R. Meteorol. Soc. 129, 2989–3012. doi:10.1256/qj.02.174
  • Pomroy, H. R. and Thorpe, A. J. 2000. The evolution and dynamical role of reduced upper-tropospheric potential vorticity in intensive observing period one of fastex. Mon. Wea. Rev. 128, 1817–1834. doi:10.1175/1520-0493(2000)128<1817:TEADRO>2.0.CO;2
  • Raymond, D. and Jiang, H. 1990. A theory for long-lived mesoscale convective systems. J. Atmos. Sci. 47, 3067–3077. doi:10.1175/1520-0469(1990)047<3067:ATFLLM>2.0.CO;2
  • Rivière, G., Arbogast, P., Lapeyre, G. and Maynard, K. 2012. A potential vorticity perspective on the motion of a mid-latitude winter storm. Geophys. Res. Lett. 39, L12808. doi:10.1029/2012GL052440
  • Roulstone, I. and Norbury, J. 2013. Invisible in the Storm: The Role of Mathematics in Understanding Weather. Princeton: Princeton University Press.
  • Sommer, M. and Névir, P. 2009. A conservative scheme for the shallow-water system on a staggered geodesic grid based on a nambu representation. Q. J. R. Meteorol. Soc. 135, 485–494. doi:10.1002/qj.368
  • Thorpe, A. and Emanuel, K. 1985. Frontogenesis in the presence of small stability to slantwise convection. J. Atmos. Sci. 42, 1809–1824. doi:10.1175/1520-0469(1985)042<1809:FITPOS>2.0.CO;2
  • Viúdez, Á. 2010. Vertical splitting of vortices in geophysical dipoles. J. Phys. Oceanogr. 40, 2170–2179. doi:10.1175/2010JPO4418.1
  • Wahl, S., Bollmeyer, C., Crewell, S., Figura, C., Friederichs, P. and co-authors. 2017. A novel convective-scale regional reanalysis cosmo-rea2: Improving the representation of precipitation. Metz. 26, 345–361. doi:10.1127/metz/2017/0824
  • Weijenborg, C., Friederichs, P. and Hense, A. 2015. Organisation of potential vorticity on the mesoscale during deep moist convection. Tellus A 67, 25705. doi:10.3402/tellusa.v67.25705
  • Weijenborg, C., Chagnon, J., Friederichs, P., Gray, S. and Hense, A. 2017. Coherent evolution of potential vorticity anomalies associated with deep moist convection. Q. J. R. Meteorol. Soc. 143, 1254–1267. doi:10.1002/qj.3000