1,274
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Development of the tangent linear and adjoint models of the MPAS-Atmosphere dynamic core and applications in adjoint relative sensitivity studies

&
Pages 1-17 | Received 29 Feb 2020, Accepted 20 Aug 2020, Published online: 16 Sep 2020

References

  • Carrier, M. J., Zou, X. and Lapenta, W. M. 2008. Comparing the vertical structures of weighting functions and adjoint sensitivity of radiance and verifying mesoscale forecasts using AIRS radiance observations. Monthly Weather Rev. 136, 1327–1348. doi:10.1175/2007MWR2057.1
  • Courtier, P., Derber, J., Errico, R., Louis, J. F. J.-F. and Vukicevic, T. 1993. Review of the use of adjoint, variational methods, and Kalman filters in meteorology. Tellus A 45, 342–357. doi:10.3402/tellusa.v45i5.14898
  • Courtier, P. and Talagrand, O. 1990. Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations. Tellus A 42, 531–549. doi:10.3402/tellusa.v42i5.11896
  • Courtier, P., Thépaut, J. N. and Hollingsworth, A. 1994. A strategy for operational implementation of 4D‐Var, using an incremental approach. Q. J. Royal Meteorol. Soc. 120, 1367–1387. doi:10.1002/qj.49712051912
  • Errico, R. M. 1997. What is an adjoint model? Bull. Am. Meteorol. Soc. 78, 2577–2592. doi:10.1175/1520-0477(1997)078<2577:WIAAM>2.0.CO;2
  • Errico, R. M. and Vukicevic, T. 1992. Sensitivity analysis using an adjoint of the PSU-NCAR mesoseale model. Monthly Weather Rev. 120, 1644–1660. doi:10.1175/1520-0493(1992)120<1644:SAUAAO>2.0.CO;2
  • Giering, R. and Kaminski, T. 2003. Applying TAF to generate efficient derivative code of Fortran 77‐95 programs. Proc. Appl. Math. Mech. 2, 54–57. doi:10.1002/pamm.200310014
  • Hagos, S., Leung, R., Rauscher, S. A. and Ringler, T. 2013. Error characteristics of two grid refinement approaches in aquaplanet simulations: MPAS-A and WRF. Monthly Weather Rev. 141, 3022–3036. doi:10.1175/MWR-D-12-00338.1
  • Jablonowski, C. and Williamson, D. L. 2006a. A Baroclinic Wave Test Case for Dynamical Cores of General Circulation Models: Model Intercomparisons. NCAR Technical Note (NCAR/TN–469 + STR). University Corporation for Atmospheric Research, Boulder, CO, USA.
  • Jablonowski, C. and Williamson, D. L. 2006b. A baroclinic instability test case for atmospheric model dynamical cores. Q. J. Royal Meteorol. Soc. 132, 2943–2975. doi:10.1256/qj.06.12
  • Le Dimet, F.-X. and Talagrand, O. 1986. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus A 38, 97–110. doi:10.3402/tellusa.v38i2.11706
  • Lin, J. W.-B. 2012. Why Python is the next wave in earth sciences computing. Bull. Am. Meteorol. Soc. 93, 1823–1824. doi:10.1175/BAMS-D-12-00148.1
  • Lutz, M. 2013. Learning Python: Powerful Object-Oriented Programming. 5th ed. O'Reilly Media, Inc. Newton, MA, USA.
  • Park, S.-H., Skamarock, W. C., Klemp, J. B., Fowler, L. D. and Duda, M. G. 2013. Evaluation of global atmospheric solvers using extensions of the Jablonowski and Williamson baroclinic wave test case. Monthly Weather Rev. 141, 3116–3129. doi:10.1175/MWR-D-12-00096.1
  • Peterson, P. 2009. F2PY: a tool for connecting Fortran and Python programs. Int. J. Comput. Sci. Eng.. 4, 296–305.
  • Rabier, F., Courtier, P. and Talagrand, O. 1992. An application of adjoint models to sensitivity analysis. Beitr. Phys. Atmos. 65, 177–192.
  • Rabier, F., Klinker, E., Courtier, P. and Hollingsworth, A. 1996. Sensitivity of forecast errors to initial conditions. Q. J. Royal Meteorol. Soc. 122, 121–150. doi:10.1002/qj.49712252906
  • Rauscher, S. A. and Ringler, T. D. 2014. Impact of variable-resolution meshes on midlatitude baroclinic eddies using CAM-MPAS-A. Monthly Weather Rev. 142, 4256–4268. doi:10.1175/MWR-D-13-00366.1
  • Ringler, T., Ju, L. and Gunzburger, M. 2008. A multiresolution method for climate system modeling: application of spherical centroidal Voronoi tessellations. Ocean Dyn. 58, 475–498. doi:10.1007/s10236-008-0157-2
  • Satoh, M., Matsuno, T., Tomita, H., Miura, J., Nasuno, T. and co-authors. 2008. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. Comput. Phys. 227, 3486–3514. doi:10.1016/j.jcp.2007.02.006
  • Skamarock, W. C. and Klemp, J. B. 2008. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. Comput. Phys. 227, 3465–3485. doi:10.1016/j.jcp.2007.01.037
  • Skamarock, W. C., Klemp, J. B., Duda, M. G., Fowler, L. D., Park, S.-H. and co-authors. 2012. A multiscale nonhydrostatic atmospheric model using centroidal Voronoi tesselations and C-grid staggering. Monthly Weather Rev. 140, 3090–3105. doi:10.1175/MWR-D-11-00215.1
  • Xiao, Q., Kuo, Y.-H., Ma, Z., Huang, W., Huang, X.-Y. and co-authors. 2008. Application of an adiabatic WRF adjoint to the investigation of the May 2004 McMurdo, Antarctica, severe wind event. Monthly Weather Rev. 136, 3696–3713. doi:10.1175/2008MWR2235.1
  • Zou, X., Barcilon, A., Navon, I. M., Whitaker, J. and Cacuci, D. G. 1993. An adjoint sensitivity study of blocking in a two-layer isentropic model. Monthly Weather Rev. 121, 2833–2857. doi:10.1175/1520-0493(1993)121<2833:AASSOB>2.0.CO;2
  • Zou, X. and Kuo, Y. H. 1996. Rainfall assimilation through an optimal control of initial and boundary conditions in a limited-area mesoscale model. Monthly Weather Rev. 124, 2859–2882. doi:10.1175/1520-0493(1996)124<2859:RATAOC>2.0.CO;2
  • Zou, X., Kuo, Y. H. and Guo, Y. R. 1995. Assimilation of atmospheric radio refractivity using a nonhydrostatic adjoint model. Monthly Weather Rev. 123, 2229–2250. doi:10.1175/1520-0493(1995)123<2229:AOARRU>2.0.CO;2
  • Zou, X., Vandenberghe, F., Pondeca, M. and Kuo, Y.-H. 1997. Introduction to adjoint techniques and the MM5 adjoint modeling system (No. NCAR/TN-435 + STR). University Corporation for Atmospheric Research..