1,384
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Measuring and restructuring the risk in forecasting drought classes: an application of weighted Markov chain based model for standardised precipitation evapotranspiration index (SPEI) at one-month time scale

ORCID Icon, ORCID Icon, , , , , , & show all
Pages 1-10 | Received 28 Jul 2019, Accepted 17 Oct 2020, Published online: 10 Nov 2020

References

  • Ali, Z., Hussain, I., Faisal, M., Nazir, H. M., Hussain, T. and co-authors. 2017. Forecasting drought using multilayer perceptron artificial neural network model. Adv. Meteorol. 2017, 1–9. doi:10.1155/2017/5681308
  • Ahmad, Z., Hafeez, M. and Ahmad, I. 2012. Hydrology of mountainous areas in the Upper Indus Basin, Northern Pakistan with the perspective of climate change. Environ. Monit. Assess. 184, 5255–5274. doi:10.1007/s10661-011-2337-7
  • Ali, Z., Hussain, I., Faisal, M., Almanjahie, I. M., Ahmad, I. and co-authors. 2019. A probabilistic weighted joint aggregative drought index (PWJADI) criterion for drought monitoring systems. Tellus. Dyn. Meteorol. Oceanogr. 1–21.
  • Ali, Z., Hussain, I., Faisal, M., Almanjahie, I. M., Ismail, M. and co-authors. 2018. A new weighting scheme in weighted Markov model for predicting the probability of drought episodes. Adv. Meteorol. 2018, 1–10. doi:10.1155/2018/8954656
  • Ali, Z., Hussain, I., Faisal, M., Nazir, H. M., Abd-el Moemen, M. and co-authors. 2017. A novel multiscalar drought index for monitoring drought: the standardized precipitation temperature index. Water Resour. Manage. 31, 4957–4969. doi:10.1007/s11269-017-1788-1
  • Archer, D. R. and Fowler, H. J. 2004. Spatial and temporal variations in precipitation in the Upper Indus Basin, global teleconnections and hydrological implications. Hydrol. Earth Syst. Sci. 8, 47–61. doi:10.5194/hess-8-47-2004
  • Arnhold, E. 2014. Easyanova: analysis of variance and other important complementary analyzes. R package version, 4.
  • Awan, S. A. 2002. The climate and flood risk potential of northern areas of Pakistan. Science Vision 7, 100–109.
  • Bacanli, U. G., Firat, M. and Dikbas, F. 2009. Adaptive neuro-fuzzy inference system for drought forecasting. Stoch. Environ. Res. Risk Assess. 23, 1143–1154. doi:10.1007/s00477-008-0288-5
  • Benoit, G. 2005. Weighted Markov chains and graphic state nodes for information retrieval. Proc. Am. Soc. Info. Sci. Tech. 39, 115–123. doi:10.1002/meet.1450390113
  • Chen, J. and Yang, Y. 2012. SPI-based regional drought prediction using weighted Markov chain model. Res. J. Appl. Sci. Eng. Technol. 4, 4293–4298.
  • Chiang, C. L. 1968. Introduction to Stochastic Processes in Biostatistics, Vol. 95. Wiley, New York.
  • Crommelin, D. and Vanden-Eijnden, E. 2006. Fitting timeseries by continuous-time Markov chains: a quadratic programming approach. Comput. Phys. 217, 782–805. doi:10.1016/j.jcp.2006.01.045
  • De-di, L. and Chen X.-H. 2006. Annual precipitation forecasting based on the weighted Markov chain in Beijing River Basin. Journal of China Hydrology 6, 006.
  • Edwards, B., Gray, M. and Hunter, B. 2009. A sunburnt country: the economic and financial impact of drought on rural and regional families in Australia in an era of climate change. Aust J Labour Econ. 12, 109.
  • Gong, Z., Chen, C. and Ge, X. 2014. Risk prediction of low temperature in Nanjing city based on grey weighted Markov model. Nat. Hazards 71, 1159–1180. doi:10.1007/s11069-013-0690-2
  • Gui, Y. and Shao, J. 2017. Prediction of precipitation based on weighted Markov chain in Dangshan. In Proceedings of the International Conference on High Performance Compilation, Computing and Communications, ACM, 81–85.
  • Haan, C. T. 1977. Statistical Methods in Hydrology. The Iowa State University Press, Iowa.
  • Hargreaves, G. H. 1994. Defining and using reference evapotranspiration. J. Irrig. Drain. Eng. 120, 1132–1139. doi:10.1061/(ASCE)0733-9437(1994)120:6(1132)
  • Kaliakatsos-Papakostas, M. A., Epitropakis, M. G. and Vrahatis, M. N. 2011. Weighted Markov chain model for musical composer identification. In European Conference on the Applications of Evolutionary Computation, Springer, 334–343.
  • Lange, K. 2010. Numerical Analysis for Statisticians. Springer, Berlin.
  • Lee, H.-Y. and Chen, S.-L. 2006. Why use Markov-switching models in exchange rate prediction? Econ. Model. 23, 662–668. doi:10.1016/j.econmod.2006.03.007
  • Le-Tian, X. 2005. Prediction of plum rain intensity based on index weighted Markov chain. J. Hydraul. Eng. 8, 988–993.
  • Lohani, V. K. and Loganathan, G. 1997. An early warning system for drought management using the palmer drought index1. JAWRA Journal of the American Water Resources Association, 33, 1375–1386.
  • Marden, J. I. 1996. Analyzing and Modeling Rank Data. CRC Press, Boca Raton.
  • McKee, T. B., Doesken, N. J. and Kleist, J. 1993. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Vol. 17, American Meteorological Society Boston, MA, pp. 179–183.
  • Paulo, A. A. and Pereira, L. S. 2007. Prediction of SPI drought class transitions using Markov chains. Water Resour. Manage. 21, 1813–1827. doi:10.1007/s11269-006-9129-9
  • Peng, Z., Bao, C., Zhao, Y., Yi, H., Xia, L. and co-authors. 2010. Weighted Markov chains for forecasting and analysis in incidence of infectious diseases in Jiangsu Province. J. Biomed. Res. 24, 207–214. doi:10.1016/S1674-8301(10)60030-9
  • Sen, Z. 1990. Critical drought analysis by second-order Markov chain. J. Hydrol. (Amsterdam) 120, 183–202. doi:10.1016/0022-1694(90)90149-R
  • Shatanawi, K., Rahbeh, M. and Shatanawi, M. 2013. Characterizing, monitoring and forecasting of drought in Jordan River Basin. JWARP. 05, 1192–1202. doi:10.4236/jwarp.2013.512127
  • Spedicato, G. A., Kang, T. S., Yalamanchi, S. B. and Yadav, D. 2016. The Markovchain package: package for easily handling discrete Markov chains in r. Accessed Dec.
  • Svoboda, M. and Fuchs, B. 2016. Handbook of Drought Indicators and Indices. Integrated Drought Management Tools and Guidelines Series. World Meteorological Organization, National Drought Mitigation Center, University of Nebraska-Lincoln, Nebraska-Lincoln.
  • Takahashi, K., Morikawa, K., Takeda, D., Mizuno, A. 2007. Inventory control for a Markovian remanufacturing system with stochastic decomposition process. Int. J. Prod. Econ. 108, 416–425. doi:10.1016/j.ijpe.2006.12.023
  • Thornthwaite, C. W. 1948. An approach toward a rational classification of climate. Geogr. Rev. 38, 55–94. doi:10.2307/210739
  • Vicente-Serrano, S. M., Beguería, S. and López-Moreno, J. I. 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim. 23, 1696–1718. doi:10.1175/2009JCLI2909.1
  • Vicente-Serrano, S. M., Lo'pez-Moreno, J. I. and Van der Hurk, B. 2005. Hydrological response to different time scales of climatological drought: an evaluation of the standardized precipitation index in a mountainous Mediterranean basin. Hydrol. Earth Syst. Sci. 9, 523–533.
  • White, G. F. 1974. Natural Hazards, Local, National, Global. Oxford University Press, Oxford.
  • Zhou, P., Zhou, Y., Jin, J., Liu, L., Wang, Z. and co-authors. 2011. An improved Markov chain model based on autocorrelation and entropy techniques and its application to state prediction of water resources. Chin. Geogr. Sci. 21, 176–184. doi:10.1007/s11769-011-0447-3