613
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Adding CO2 channel 16 to AHI data assimilation over land further improves short-range rainfall forecasts

ORCID Icon
Pages 1-19 | Received 30 Mar 2020, Accepted 16 Oct 2020, Published online: 30 Oct 2020

References

  • Andersson, E., Pailleux, J., Thépaut, J.-N., Eyre, J. R., McNally, A. P. and co-authors. 1994. Use of cloud-cleared radiances in three/four-dimensional variational data assimilation. Q. J. Royal Met. Soc. 120, 627–653. doi:10.1002/qj.49712051707
  • Bessho, K., Date, K., Hayashi, M., Ikeda, A., Imai, T. and co-authors. 2016. An introduction to Himawari-8/9—Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 94, 151–183. doi:10.2151/jmsj.2016-009
  • Bouttier, F. and Kelly, G. 2001. Observing-system experiments in the ECMWF 4D-Var data assimilation system. Q. J. Royal Met. Soc. 127, 1469–1488. doi:10.1002/qj.49712757419
  • Carrier, M. J., Zou, X. and Lapenta, W. M. 2008. Comparing the vertical structures of weighting functions and adjoint sensitivity of radiance and verifying mesocale forecasts using AIRS radiance observations. Mon. Wea. Rev. 136, 1327–1348. doi:10.1175/2007MWR2057.1
  • Choi, Y.-S. and Ho, C.-H. 2015. Earth and environmental remote sensing community in South Korea: a review. Remote Sens. Appl. Soc. Environ. 2, 66–76.
  • Derber, J. 2003. Enhanced use of radiance data in NCEP data assimilation systems. In: Proceedings of the ITSC XIII, Ste. Adele, Canada.
  • Derber, J. C. and Wu, W.-S. 1998. The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev. 126, 2287–2299. doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
  • English, S. J., Renshaw, R. J., Dibben, P. C., Smith, A. J., Rayer, P. R. and co-authors. 2000. A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Q. J. R. Meteorol. Soc. 126, 2911–2932.
  • Eyre, J. R. 2007. Progress achieved on assimilation of satellite data in numerical weather prediction over the last 30 years. In: Proceeding of ECMWF Seminar on Recent Developments in of Satellite Observations in Numerical Weather Prediction, ECMWF Publication, Reading UK, 1–27.
  • Eyre, J. R., Kelly, G. A., Mcnally, A. P., Andersson, E. and Persson, A. 1993. Assimilation of TOVS radiance information through one dimensional variational analysis. Q. J. Royal Met. Soc. 119, 1427–1463. doi:10.1002/qj.49711951411
  • Fertig, E. J., Baek, S.-J., Hunt, B., Ott, E., Szunyogh, I. and co-authors, 2009. Observation bias correction with an ensemble Kalman filter. Tellus 61A, 210–226.
  • Garand, L. and Wagneur, N. 2002. Assimilation of GOES imager channels at MSC. In: Proceedings of the ITSC XII, Lorne, Australia.
  • Guedj, S., Karbou, F. and Rabier, F. 2011. Land surface temperature estimation to improve the assimilation of SEVIRI radiances over land. J. Geophys. Res. 116, D14107. doi:10.1029/2011JD015776
  • Han, Y., Weng, F., Liu, Q. and van Delst, P. 2007. A fast radiative transfer model for SSMIS upper atmosphere sounding channels. J. Geophys. Res. 112, D11121. doi:10.1029/2006JD008208
  • Honda, T., Kotsuki, S., Lien, G.-Y., Maejima, Y., Okamoto, K. and co-authors. 2018. Assimilation of Himawari-8 all-sky radiances every 10 minutes: impact on precipitation and flood risk prediction. J. Geophys. Res. Atmos. 123, 965–976. doi:10.1002/2017JD027096
  • Honda, T., Miyoshi, T., Lien, G.-Y., Nishizawa, S., Yoshida, R., Adachi, S. A. and co-authors. 2018. Assimilating all-sky Himawari-8 infrared radiances: a case of Typhoon Soudelor (2015). Mon. Wea. Rev. 146, 213–229. doi:10.1175/MWR-D-16-0357.1
  • Hong, S.-Y. and Dudhia, J. 2003. Testing of a new non-local boundary layer vertical diffusion scheme in numerical weather prediction applications. In: 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA.
  • Hong, S.-Y. and Lim, J.-O. J. 2006. The WRF singlemoment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc. 42, 129–151.
  • Jones, T. A., Wang, X., Skinner, P., Johnson, A. and Wang, Y. 2018. Assimilation of GOES-13 imager clear-sky water vapor (6.5 mm) radiances into a Warn-on-Forecast system. Mon. Wea. Rev. 146, 1077–1107. doi:10.1175/MWR-D-17-0280.1
  • Kazumori, M. 2016. Assimilation of Himawari-8 clear-sky radiance data in JMA’s NWP systems. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell. 46, 01.15–01.16.
  • Kelly, G. 2008. Preparations and experiments to assimilate satellite image data into high resolution NWP, Tech. Rep. 522, Met Off. Meteorol. Res. and Dev., Exeter, UK.
  • Kelly, G. and Thepaut, J.-N. 2007. Evaluation of the impact of the space component of global observing system through observing system experiment, ECMWF publication, Reading UK, 327–346.
  • Köpken, C., Kelly, G. and Thépaut, J.-N. 2004. Assimilation of Meteosat radiance data within the 4D-VAR system at ECMWF: assimilation experiments and forecast impact. Q. J. R Meteorol. Soc. 130, 2277–2292. doi:10.1256/qj.02.230
  • Köpken, C., Thépaut, J.-N. and Kelly, G. 2003. Assimilation of geostationary WV radiances from GOES and Meteosat at ECMWF. Research report No. 14, EUMETSAT/ECMWF Fellowship programme. ECMWF, Reading, UK.
  • Li, X., Zou, X. and Zeng, M. 2019. An alternative bias correction scheme for CrIS data assimilation in a regional model. Mon. Wea. Rev.,147, 809–839.
  • Ma, Z., Maddy, E., Zhang, B., Zhu, T. and Boukabara, S. 2017. Impact assessment of Himawari-8 AHI data assimilation in NCEP GDAS/GFS with GSI. J. Atmos. Oceanic Technol. 34, 797–815. doi:10.1175/JTECH-D-16-0136.1
  • Minamide, M. and Zhang, F. 2018. Assimilation of all-sky infrared radiances from Himawari-8 and impacts of moisture and hydrometer initialization on convection-permitting tropical cyclone prediction. Mon. Wea. Rev. 146, 3241–3258. doi:10.1175/MWR-D-17-0367.1
  • Miyoshi, T., Sato, Y. and Kadowaki, T. 2010. Ensemble Kalman filter and 4D-Var intercomparison with the Japanese operational global analysis and prediction system. Mon. Wea. Rev. 138, 2846–2866. doi:10.1175/2010MWR3209.1
  • Montmerle, T., Rabier, F. and Fischer, C. 2007. Relative impact of polar-orbiting and geostationary satellite radiances in the Aladin/France numerical weather prediction system. Q. J. R. Meteorol. Soc. 133, 655–671. doi:10.1002/qj.34
  • Qin, Z. and Zou, X. 2018. Direct assimilation of ABI infrared radiances in NWP models. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 11, 2022–2033. doi:10.1109/JSTARS.2018.2803810
  • Qin, Z. and Zou, X. 2019. Impact of AMSU-A data assimilation over high terrains on QPFs downstream of the Tibetan Plateau. J. Meteorol. Soc. Jpn. 97, 1137–1154. doi:10.2151/jmsj.2019-064
  • Qin, Z., Zou, X. and Weng, F. 2013. Evaluating added benefits of assimilating GOES imager radiance data in GSI for coastal QPFs. Mon. Wea. Rev. 141, 75–92. doi:10.1175/MWR-D-12-00079.1
  • Qin, Z., Zou, X. and Weng, F. 2017. Impacts of assimilating all or GOES-like AHI infrared channels radiances on QPFs over Eastern China. Tellus A Dynam. Meteorol. Oceanogr. 69, 1345265. doi:10.1080/16000870.2017.1345265
  • Schmit, T. J., Griffith, P., Gunshor, M. M., Daniels, J. M., Goodman, S. J. and co-authors. 2017. A closer look at the ABI on the GOES-R series. Bull. Am. Meteor. Soc. 98, 681–698. doi:10.1175/BAMS-D-15-00230.1
  • Shao, H., Derber, J., Huang, X.-Y., Hu, M., Newman, K. and co-authors. 2016. Bridging research to operations transitions: status and plans of community GSI. Bull. Amer. Meteor. Soc. 97, 1427–1440. doi:10.1175/BAMS-D-13-00245.1
  • Shen, Y., Zhao, P., Pan, Y. and Yu, J. 2014. A high spatiotemporal gaugesatellite merged precipitation analysis over China. J. Geophys. Res. Atmos. 119, 3063–3075. doi:10.1002/2013JD020686
  • Stengel, M., Lindskog, M., Undén, P. and Gustafsson, N. 2013. The impact of cloud-affected IR radiances on forecast accuracy of a limited-area NWP model. Q. J. R. Meteorol. Soc. 139, 2081–2096. doi:10.1002/qj.2102
  • Stengel, M., Lindskog, M., Undén, P., Gustafsson, N. and Bennartz, R. 2010. An extended observation operator in HIRLAM 4D-VAR for the assimilation of cloud-affected satellite radiances. Q. J. R. Meteorol. Soc. 136, 1064–1074. doi:10.1002/qj.621
  • Stengel, M., Undén, P., Lindskog, M., Dahlgren, P., Gustafsson, N. and co-authors. 2009. Assimilation of SEVIRI infrared radiances with HIRLAM 4D-Var. Q. J. R. Meteorol. Soc. 135, 2100–2109. doi:10.1002/qj.501
  • Schmetz, J., Pili, J., Tjemkes, S., Just, D., Kerkmann, J. and co-authors. 2002. An introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 83, 977–992. doi:10.1175/BAMS-83-7-Schmetz-2
  • Szyndel, M., Kelly, G. and Thépaut, J.-N. 2005. Evaluation of potential benefit of assimilation of SEVIRI water vapor radiances data from Meteosat-8 into global numerical weather prediction analyses. Atmos. Sci. Lett. 6, 105–111. doi:10.1002/asl.98
  • Wang, Y., Liu, Z., Yang, S., Min, J., Chen, L. and co-authors. 2018. Added value of assimilating Himawari-8 AHI water vapor radiances on analyses and forecasts for "7.19" severe storm over north China. J. Geophys. Res. 123, 3374–3394. doi:10.1002/2017JD027697
  • Wilks, D. S. 1995. Statistical Methods in the Atmospheric Sciences: An Introduction. Academic, San Francisco, CA, p. 467.
  • Wu, W.-S.,Purser, R. J. andAndparrish, D. F. 2002. Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon. Wea. Rev 130, 2905–2916.
  • Yang, J., Zhang, Z., Wei, C., Lu, F. and Guo, Q. 2017. Introducing the new generation of Chinese geostationary weather satellites, Fengyun-4. Bull. Am. Meteor. Soc. 98, 1637–1658. doi:10.1175/BAMS-D-16-0065.1
  • Zhang, F., Minamide, M. and Clothiaux, E. E. 2016. Potential impacts of assimilating all-sky infrared satellite radiance from GOES-R on convection-permitting analysis and prediction of tropical cyclones. Geophys. Res. Lett. 43, 2954–2963. doi:10.1002/2016GL068468
  • Zhang, Y., Zhang, F. and Stensrud, D. 2018. Assimilating all-sky infrared radiancefrom GOES-16 ABI using an ensemble Kalman filter for convection-allowing severe thunderstorms prediction. Mon. Wea. Rev. 146, 3363–3381. doi:10.1175/MWR-D-18-0062.1
  • Zheng, W., Wei, H., Meng, J., Ek, M., Mitchell, K. and co-authors. 2009. Improvement of land surface skin temperature in NCEP operational, paper presented at 23rd Conference on Weather Analysis and Forecasting/19th Conference on Numerical Weather Prediction, Am. Meteorol. Soc., Omaha, NE.
  • Zhu, Y.,Derber, J.,Collard, A.,Dee, D.,Treadon, R. and co-authors. 2014. Enhanced radiance bias correction in the National Centers for Environmental Prediction's Gridpoint Statistical Interpolation data assimilation system. QJR. Meteorol. Soc. 140, 1479–1492. doi:10.1002/qj.2233
  • Zhuge, X. and Zou, X. 2016. Test of a modified infrared only ABI cloud mask algorithm for AHI radiance observations. J. App. Meteor. Climatol. 55, 2529–2546. doi:10.1175/JAMC-D-16-0254.1
  • Zou, X., Qin, Z. and Weng, F. 2011. Improved coastal precipitation forecasts with direct assimilation of GOES 11/12 imager radiances. Mon. Wea. Rev. 139, 3711–3729. doi:10.1175/MWR-D-10-05040.1
  • Zou, X., Qin, Z. and Zheng, Y. 2015. Improved tropical storm forecasts with GOES-13/15 imager radiance assimilation and asymmetric vortex initialization in HWRF. Mon. Wea. Rev. 143, 2485–2505. doi:10.1175/MWR-D-14-00223.1
  • Zou, X., Weng, F., Zhang, B., Lin, L., Qin, Z. and Tallapragada, V. 2013. Impacts of assimilation of ATMS data in HWRF on track and intensity forecasts of 2012 four landfall hurricanes. J. Geophys. Res. Atmos., 118, 11558–11576. doi:10.1002/2013JD020405
  • Zou, X., Zhuge, X. and Weng, F. 2016. Characterization of bias of advanced Himawari Imager observations from NWP background simulations using CRTM and RTTOV. J. Atmos. Oceanic Technol. 33, 2553–2567. doi:10.1175/JTECH-D-16-0105.1