1,194
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Designing and evaluating regional climate simulations for high latitude land use land cover change studies

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-17 | Received 30 May 2020, Accepted 16 Nov 2020, Published online: 03 Dec 2020

References

  • Barstad, I. and Caroletti, G. N. 2013. Orographic precipitation across an island in southern Norway: model evaluation of time-step precipitation. QJR. Meteorol. Soc. 139, 1555–1565. doi:10.1002/qj.2067
  • Bartsch, A., Höfler, A., Kroisleitner, C. and Trofaier, A. M. 2016. Land cover mapping in northern high latitude permafrost regions with satellite data: achievements and remaining challenges. Remote Sensing 8, 979. doi:10.3390/rs8120979
  • Bastin, J. F., Finegold, Y., Garcia, C., Mollicone, D., Rezende, M. and co-authors. 2019. The global tree restoration potential. Science 365, 76–79. doi:10.1126/science.aax0848
  • Berthou, S., Kendon, E. J., Chan, S. C., Ban, N., Leutwyler, D. and co-authors. 2020. Pan-European climate at convection-permitting scale: a model intercomparison study. Clim. Dyn. 55, 35–59. doi:10.1007/s00382-018-4114-6
  • Breil, M., Rechid, D., Davin, E.L., de Noblet-Ducoudré, N., Katragkou, E. and co-authors. 2020. The opposing effects of re/af-forestation on the diurnal temperature cycle at the surface and in the lowest atmospheric model level in the European summer. J. Clim. 33, 9159–9179. doi:10.1175/JCLI-D-19-0624.1
  • Bright, R. M., Davin, E., O’Halloran, T., Pongratz, J., Zhao, K. and co-authors. 2017. Local temperature response to land cover and management change driven by non‐radiative processes. Nature Clim. Change 7, 296–302. doi:10.1038/nclimate3250
  • Bruyère, C. L., Rasmussen, R., Gutmann, E., Done, J. and Tye, M. and co-authors 2017. Impact of climate change on Gulf of Mexico hurricanes (NCAR Tech. Note NCAR/TN‐535 + STR, 165 pp.).
  • Cao, Q., Yu, D., Georgescu, M., Han, Z. and Wu, J. 2015. Impacts of land use and land cover change on regional climate: a case study in the agro-pastoral transitional zone of China. Environ. Res. Lett. 10, 124025. doi:10.1088/1748-9326/10/12/124025
  • Chen, L. and Dirmeyer, P. A. 2020. Reconciling the disagreement between observed and simulated temperature responses to deforestation. Nat. Commun. 11, 202. doi:10.1038/s41467-019-14017-0
  • Chen, L., Yanping, L., Chen, F., Barr, A., Barlage, M. and co-authors. 2016. The incorporation of an organic soil layer in the Noah-MP land surface model and its evaluation over a boreal aspen forest. Atmos. Chem. Phys. 16, 8375–8387. doi:10.5194/acp-16-8375-2016
  • Cornes, R. C., Schrier, G., Besselaar, E. J. M. and Jones, P. D. 2018. An ensemble version of the E‐OBS temperature and precipitation data sets. J. Geophys. Res.: Atmos. 123, 9391–9409. doi:10.1029/2017JD028200
  • Davin, E. L., Rechid, D., Breil, M., Cardoso, R. M., Coppola, E. and co-authors. 2020. Biogeophysical impacts of forestation in Europe: first results from the LUCAS (Land Use and Climate Across Scales) regional climate model intercomparison. Earth Syst. Dyn. 11, 183–200. doi:10.5194/esd-11-183-2020
  • de Noblet-Ducoudré, N., Boisier, J.-P., Pitman, A., Bonan, G. B., Brovkin, V. and co-authors. 2012. Determining robust impacts of land-use-induced land cover changes on surface climate over North America and Eurasia: results from the first set of LUCID experiments. J. Clim. 25, 3261–3281. doi:10.1175/JCLI-D-11-00338.1
  • Findell, K. L., Shevliakova, E., Milly, P. C. D. and Stouffer, R. J. 2007. Modeled impact of anthropogenic land cover change on climate. J. Clim. 20, 3621–3634. doi:10.1175/JCLI4185.1
  • Georgescu, M., Lobell, D. B. and Field, C. B. 2009. Potential impact of U.S. biofuels on regional climate. Geophys. Res. Lett. 36, L21806. doi:10.1029/2009GL040477
  • Haugland, H., Arnfinnsen, B., Aasen, H., Løbersli, E., Selboe, O. K. and co-authors. 2013. Planting av skog på nye arealer som klimatiltak egnede arealer og miljøkriterier. Rapport Miljødirektoratet, M26-2013, 149s.
  • Hong, S.-Y., Noh, Y. and Dudhia, J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev. 134, 2318–2341. doi:10.1175/MWR3199.1
  • Hu, X., Huang, B. and Cherubini, F. 2019. Impacts of idealized land cover changes on climate extremes in Europe. Ecol. Indic. 104, 626–635. doi:10.1016/j.ecolind.2019.05.037
  • Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A. and co-authors. 2008. Radiative forcing by long-lived greenhouse gases: calculations with the AER radiative transfer models. J. Geophys. Res. 113, D13103. doi:10.1029/2008JD009944
  • Jacob, D., Teichmann, C., Sobolowski, S., Katragkou, E., Anders, I. and co-authors. 2020. Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Reg. Environ. Change 20, 51. doi: 10.1007/s10113-020-01606-9
  • Jimenez, P. A., Dudhia, J., Gonzalez-Rouco, J. F., Navarro, J., Montavez, J. P. and co-authors. 2012. A revised scheme for the WRF surface layer formulation. Mon. Wea. Rev. 140, 898–918. doi:10.1175/MWR-D-11-00056.1
  • Kain, J. S. 2004. The Kain-Fritsch convective parameterization: an update. J. Appl. Meteor. 43, 170–181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
  • Katragkou, E., García-Díez, M., Vautard, R., Sobolowski, S., Zanis, P. and co-authors. 2015. Regional climate hindcast simulations within EURO-CORDEX: evaluation of a WRF multi-physics ensemble. Geosci. Model Dev. 8, 603–618. doi:10.5194/gmd-8-603-2015
  • Klein Tank, A. M. G., Wijngaard, J. B., Können, G. P., Böhm, R., Demarée, G. and co-authors. 2002. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 22, 1441–1453. doi:10.1002/joc.773
  • Laux, P., Nguyen, P. N. B., Cullmann, J., Van, T. P. and Kunstmann, H. 2017. How many RCM ensemble members provide confidence in the impact of land‐use land cover change? Int. J. Climatol. 37, 2080–2100. doi:10.1002/joc.4836
  • Lee, X., Goulden, M. L., Hollinger, D. Y., Barr, A., Black, T. A. and co-authors. 2011. Observed increase in local cooling effect of deforestation at higher latitudes. Nature 479, 384–387. doi:10.1038/nature10588
  • Liu, C., Ikeda, K., Rasmussen, R., Barlage, M., Newman, A. J. and co-authors. 2017. Continental-scale convection-permitting modeling of the current and future climate of North America. Clim. Dyn. 49, 71–95. doi:10.1007/s00382-016-3327-9
  • Lussana, C., Saloranta, T., Skaugen, T., Magnusson, J., Tveito, O. E. and co-authors. 2018a. seNorge2 daily precipitation, an observational gridded dataset over Norway from 1957 to the present day. Earth Syst. Sci. Data 10, 235–249. doi:10.5194/essd-10-235-2018
  • Lussana, C., Tveito, O. E. and Uboldi, F. 2018b. Three-dimensional spatial interpolation of 2m temperature over Norway. QJR. Meteorol. Soc. 144, 344–364. doi:10.1002/qj.3208
  • Lussana, C., Tveito, O. E., Dobler, A. and Tunheim, K. 2019. seNorge2018, daily precipitation and temperature datasets over Norway. Earth Syst. Sci. Data 11, 1531–1551. doi:10.5194/essd-11-1531-2019
  • Mahmood, R., Pielke, R. A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A. and co-authors. 2014. Land cover changes and their biogeophysical effects on climate. Int. J. Climatol. 34, 929–953. doi:10.1002/joc.3736
  • Mayer, S., Fox Maule, C., Sobolowski, S. P., Christensen, O. B. and Sørup, H. J. D. and co-authors. 2015. Identifying added value in high-resolution climate simulations over Scandinavia. Tellus Ser. A Dyn. Meteorol. Oceanogr. 67, 1–18.
  • Metsämäki, S., Pulliainen, J., Salminen, M., Luojus, K., Wiesmann, A. and co-authors. 2015. Introduction to GlobSnow snow extent products with considerations for accuracy assessment. Remote Sens. Environ. 156, 96–108. doi:10.1016/j.rse.2014.09.018
  • Mooney, P. A., Mulligan, F. J. and Broderick, C. 2016. Diurnal cycle of precipitation over the British Isles in a 0.44° WRF multiphysics regional climate ensemble over the period 1990–1995. Clim. Dyn. 47, 3281–3300. doi:10.1007/s00382-016-3026-6
  • Mooney, P. A., Mulligan, F. J. and Fealy, R. 2013. Evaluation of the sensitivity of the weather research and forecasting model to parameterization schemes for regional climates of Europe over the period 1990–95. J. Clim. 26, 1002–1017. doi:10.1175/JCLI-D-11-00676.1
  • Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek, M. B. and co-authors. 2011. The community Noah land surface model with multi-parameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 116, D12109. doi:10.1029/2010JD015139
  • Odland, A. 2015. Effect of latitude and mountain height on the timberline (Betula pubescens ssp. czerpanovii) elevation along the central Scandinavian mountain range. Fennia – Int. J. Geography 193, 260–270.
  • Parker, C. L., Bruyère, C. L., Mooney, P. A. and Lynch, A. H. 2018. The response of land-falling tropical cyclone characteristics to projected climate change in northeast Australia. Clim. Dyn. 51, 3467–3485. doi:10.1007/s00382-018-4091-9
  • Pielke, R. A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C. and co-authors. 2011. Land use/land cover changes and climate: modeling analysis and observational evidence. Wires. Clim. Change 2, 828–850. doi:10.1002/wcc.144
  • Pitman, A. J., Avila, F. B., Abramowitz, G., Wang, Y. P., Phipps, S. J. and co-authors. 2011. Importance of background climate in determining impact of land-cover change on regional climate. Nat. Clim. Change 1, 472–475. doi:10.1038/nclimate1294
  • Pontoppidan, M., Reuder, J., Mayer, S. and Kolstad, E. 2017. Downscaling an intense precipitation event in complex terrain: the importance of high grid resolution. Tellus Ser. A Dyn. Meteorol. Oceanogr. 69, 1–15.
  • Prein, A. F. and Gobiet, A. 2017. Impacts of uncertainties in European gridded precipitation observations on regional climate analysis. Int. J. Climatol. 37, 305–327. doi:10.1002/joc.4706
  • Qu, R. J., Cui, X. L., Yan, H. M., Ma, E. J. and Zhan, J. Y. 2013. Impacts of land cover change on the near‐surface temperature in the North China Plain. Adv. Meteorol. 2013, 1–12. 409302,
  • Sandvik, M. I., Sorteberg, A. and Rasmussen, R. 2018. Sensitivity of historical orographically enhanced extreme precipitation events to idealized temperature perturbations. Clim. Dyn. 50, 143–157. doi:10.1007/s00382-017-3593-1
  • Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O. Barker, D. M. and co-authors 2008. A description of the advanced research WRF version 3. (NCAR Technical Note, NCAR/TN-475 + STR, 113p).
  • Thompson, G., Field, P. R., Rasmussen, R. M. and Hall, W. D. 2008. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parameterization. Mon. Wea. Rev. 136, 5095–5115. doi:10.1175/2008MWR2387.1
  • Wagner, M., Wang, M., Miguez‐Macho, G., Miller, J., VanLoocke, A. and co-authors. 2017. A realistic meteorological assessment of perennial biofuel crop deployment: a Southern Great Plains perspective. GCB Bioenergy 9, 1024–1041. doi:10.1111/gcbb.12403
  • Wang, L., Lee, X., Feng, D., Fu, C. and Wei, Z. 2018. Impact of large-scale afforestation on surface temperature: a case study in the Kubuqi Desert, Inner Mongolia based on the WRF model. Forests 10, 1–21. doi:10.3390/f10010001