1,779
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Airborne survey of trace gases and aerosols over the Southern Baltic Sea: from clean marine boundary layer to shipping corridor effect

, , , , , , , , , , , & show all

References

  • Aakko-Saksa, P. and Lehtoranta, K. 2019. Ship emissions in the future – review, [online]. Online at: https://cris.vtt.fi/en/publications/ship-emissions-in-the-future-review (Accessed 9 October 2019).
  • Agrawal, H., Malloy, Q. G. J., Welch, W. A., Wayne Miller, J. and Cocker, D. R. III, 2008. In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos. Environ. 42, 5504–5510. 2008. doi:10.1016/j.atmosenv.2008.02.053
  • Aksoyoglu, S., Baltensperger, U. and Prévôt, A. S. H. 2016. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmos. Chem. Phys. 16, 1895–1906. 2016. doi:10.5194/acp-16-1895-2016
  • Andersen, J. H., Carstensen, J., Conley, D. J., Dromph, K., Fleming-Lehtinen, V. and co-authors. 2017. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 92, 135–149.: doi:10.1111/brv.12221
  • Ault, A. P., Gaston, C. J., Wang, Y., Dominguez, G., Thiemens, M. H. and co-authors. 2010. Characterization of the single particle mixing state of individual ship plume events measured at the Port of Los Angeles. Environ. Sci. Technol. 44, 1954–1961. doi: 10.1021/es902985h
  • Ausmeel, S., Eriksson, A., Ahlberg, E. and Kristensson, A. 2019. Methods for identifying aged ship plumes and estimating contribution to aerosol exposure downwind of shipping lanes, Atmospheric Meas. Tech. Discuss. 1–20. doi:, 2019.
  • Baumgardner, D., Popovicheva, O., Allan, J., Bernardoni, V., Cao, J. and co-authors. 2012. Soot reference materials for instrument calibration and intercomparisons: a workshop summary with recommendations. Atmos. Meas. Tech. 5, 1869–1887. 2012. doi:10.5194/amt-5-1869-2012
  • Bohren, C. F. and Huffman, D. R. 1998. Classical theories of optical constants, in absorption and scattering of light by small particles, pp. 226–267, Wiley-VCH Verlag GmbH. [online]. Online at: http://onlinelibrary.wiley.com/doi/10.1002/9783527618156.ch9/summary (Accessed 23 March 2015),
  • Bond, T. C. and Bergstrom, R. W. 2006. Light absorption by carbonaceous particles: an investigative review. Aerosol Sci. Technol. 40, 27–67. doi:10.1080/02786820500421521
  • Bond, T. C., Habib, G. and Bergstrom, R. W. 2006. Limitations in the enhancement of visible light absorption due to mixing state. J. Geophys. Res. 111, D20211. 2006. doi:10.1029/2006JD007315
  • Brands, M., Kamphus, M., Böttger, T., Schneider, J., Drewnick, F. and co-authors. 2011. Characterization of a newly developed Aircraft-Based Laser Ablation Aerosol Mass Spectrometer (ALABAMA) and first field deployment in urban pollution plumes over paris during MEGAPOLI 2009. Aerosol Sci. Technol. 45, 46–64.: doi:10.1080/02786826.2010.517813
  • Brönnimann, S., Schuepbach, E., Zanis, P., Buchmann, B. and Wanner, H. 2000. A climatology of regional background ozone at different elevations in Switzerland (1992–1998). Atmos. Environ. 34, 5191–5198. doi:10.1016/S1352-2310(00)00193-X
  • Brutemark, A., Engström-Öst, J. and Vehmaa, A. 2011. Long-term monitoring data reveal pH dynamics, trends and variability in the Western Gulf of Finland. Oceanol. Hydrobiol. Stud. 40, 91–94. doi:10.2478/s13545-011-0034-3
  • Buffaloe, G. M., Lack, D. A., Williams, E. J., Coffman, D., Hayden, K. L. and co-authors. 2014. Black carbon emissions from in-use ships: a California regional assessment. Atmos. Chem. Phys. 14, 1881–1896. 2014. doi:10.5194/acp-14-1881-2014
  • Bundke, U., Berg, M., Houben, N., Ibrahim, A., Fiebig, M. and co-authors. 2015. The IAGOS-CORE aerosol package: instrument design, operation and performance for continuous measurement aboard in-service aircraft. Tellus B Chem. Phys. Meteorol. 67, 28339. doi:10.3402/tellusb.v67.28339
  • Byčenkienė, S., Ulevicius, V., Prokopčiuk, N. and Jasinevičienė, D. 2013. Observations of the aerosol particle number concentration in the marine boundary layer over the south-eastern Baltic Sea**The research leading to these results has received funding from Lithuanian-Swiss cooperation programme to reduce economic social disparities within the enlarged European Union under project AEROLIT agreement No. CH-3-ŠMM-01/08. Oceanologia 55, 573–597. doi:10.5697/oc.55-3.573
  • Cai, Y., Montague, D. C., Mooiweer-Bryan, W. and Deshler, T. 2008. Performance characteristics of the ultra high sensitivity aerosol spectrometer for particles between 55 and 800 nm: Laboratory and field studies. J. Aerosol Sci. 39, 759–769. 2008. doi:10.1016/j.jaerosci.2008.04.007
  • Cappa, C. D., Williams, E. J., Lack, D. A., Buffaloe, G. M., Coffman, D. and co-authors. 2014. A case study into the measurement of ship emissions from plume intercepts of the NOAA ship Miller Freeman. Atmos. Chem. Phys. 14, 1337–1352. : 2014. doi:10.5194/acp-14-1337-2014
  • Chevalier, A., Gheusi, F. and Delmas, R. 2007. Influence of altitude on ozone levels and variability in the lower troposphere: a ground-based study for Western Europe over the period 2001–2004. Atmos. Chem. Phys. 7, 4311–4326. doi:10.5194/acp-7-4311-2007
  • Claremar, B., Haglund, K. and Rutgersson, A. 2017. Ship emissions and the use of current air cleaning technology: contributions to air pollution and acidification in the Baltic Sea. Earth Syst. Dynam. 8, 901–919. 2017. doi:10.5194/esd-8-901-2017
  • Coggon, M. M., Sorooshian, A., Wang, Z., Metcalf, A. R., Frossard, A. A. and co-authors. 2012. Ship impacts on the marine atmosphere: insights into the contribution of shipping emissions to the properties of marine aerosol and clouds. Atmos. Chem. Phys. 12, 8439–8458. 2012. doi:10.5194/acp-12-8439-2012
  • Corbin, J. C., Pieber, S. M., Czech, H., Zanatta, M., Jakobi, G. and co-authors. 2018. Brown and black carbon emitted by a marine engine operated on heavy fuel oil and distillate fuels: optical properties, size distributions, and emission factors. J. Geophys. Res. Atmos. 123, 6175–6195.: doi:10.1029/2017JD027818
  • Dahlkötter, F., Gysel, M., Sauer, D., Minikin, A., Baumann, R. and co-authors. 2014. The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – aerosol properties and black carbon mixing state. Atmos. Chem. Phys. 14, 6111–6137.: 2014. doi:10.5194/acp-14-6111-2014
  • Dall’Osto, M., Booth, M. J., Smith, W., Fisher, R. and Harrison, R. M. 2008. A study of the size distributions and the chemical characterization of airborne particles in the vicinity of a large integrated steelworks. Aerosol Sci. Technol. 42, 981–991. doi:10.1080/02786820802339587
  • Dinar, E., Riziq, A. A., Spindler, C., Erlick, C., Kiss, G. and co-authors. 2008. The complex refractive index of atmospheric and model humic-like substances (HULIS) retrieved by a cavity ring down aerosol spectrometer (CRD-AS). Faraday Discuss. 137, 279–295. discussion 297-318, doi:10.1039/B703111D
  • Ebert, M., Weinbruch, S., Rausch, A., Gorzawski, G., Helas, G. and co-authors. 2002. Complex refractive index of aerosols during LACE 98#x2010; as derived from the analysis of individual particles. J. Geophys. Res. Atmospheres 107, LAC 3-1-LAC 3-15. doi:10.1029/2000JD000195
  • de Faria, J. P., Bundke, U., Berg, M., Freedman, A., Onasch, T. B. and co-authors. 2017. Airborne and laboratory studies of an IAGOS instrumentation package containing a modified CAPS particle extinction monitor. Aerosol Sci. Technol. 51, 1240–1253. 2017. doi:10.1080/02786826.2017.1355547
  • Fuglestvedt, J., Berntsen, T., Eyring, V., Isaksen, I., Lee, D. S. and co-authors. 2009. Shipping emissions: from cooling to warming of climate—and reducing impacts on health. Environ. Sci. Technol. 43, 9057–9062. doi:10.1021/es901944r
  • Gryning, S.-E. and Batchvarova, E. 2002. Marine boundary layer and turbulent fluxes over the Baltic Sea: measurements and modelling. Bound.-Layer Meteorol. 103, 29–47. doi:10.1023/A:1014514513936
  • Gysel, M., Laborde, M., Olfert, J. S., Subramanian, R. and Gröhn, A. J. 2011. Effective density of Aquadag and fullerene soot black carbon reference materials used for SP2 calibration. Atmos. Meas. Tech. 4, 2851–2858. 2011. doi:10.5194/amt-4-2851-2011
  • Healy, R. M., O'Connor, I. P., Hellebust, S., Allanic, A., Sodeau, J. R. and co-authors. 2009. Characterisation of single particles from in-port ship emissions. Atmos. Environ. 43, 6408–6414. 2009. doi:10.1016/j.atmosenv.2009.07.039
  • HELCOM. 2018a. HELCOM:: State of the Baltic Sea – Second HELCOM holistic assessment 2011–2016.
  • HELCOM. 2018b. HELCOM: Assessment on maritime activities in the Baltic Sea 2018, 256.
  • Herber, A. B., Haas, C., Stone, R. S., Bottenheim, J. W., Liu, P. and co-authors. 2012. Regular airborne surveys of Arctic sea ice and atmosphere. Eos Trans. Am. Geophys. Union. 93, 41–42. 2012. doi:10.1029/2012EO040001
  • Hess, M., Koepke, P. and Schult, I. 1998. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Amer. Meteor. Soc. 79, 831–844. > 2.0.CO;2, 1998. doi:10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
  • Hinz, K.-P., Greweling, M., Drews, F. and Spengler, B. 1999. Data processing in on-line laser mass spectrometry of inorganic, organic, or biological airborne particles. J. Am. Soc. Mass Spectrom. 10, 648–660. doi:10.1016/S1044-0305(99)00028-8
  • Hyvärinen, A.-P., Komppula, M., Engler, C., Kivekäs, N., Kerminen, V.-M. and co-authors. 2008. Atmospheric new particle formation at Utö, Baltic Sea 2003–2005. Tellus B. 60, 345–352. doi:10.1111/j.1600-0889.2008.00343.x
  • Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M. and Denier van der Gon, H. A. C. 2015. Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea. Atmos. Chem. Phys. 15, 783–798. 2015. doi:10.5194/acp-15-783-2015
  • Jonsson, Å. M., Westerlund, J. and Hallquist, M. 2011. Size‐resolved particle emission factors for individual ships. Geophys. Res. Lett. 38, L13809. doi:10.1029/2011GL047672
  • Karl, M., Jonson, J. E., Uppstu, A., Aulinger, A., Prank, M. and co-authors. 2019. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmospheric Chem. Phys. 19, 7019–7053. doi:10.5194/acp-19-7019-2019
  • Kattner, L., Mathieu-Üffing, B., Burrows, J. P., Richter, A., Schmolke, S. and co-authors. 2015. Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions. Atmos. Chem. Phys. 15, 10087–10092. doi:10.5194/acp-15-10087-2015
  • Kecorius, S., Kivekäs, N., Kristensson, A., Tuch, T., Covert, D. S. and co-authors. 2016. Significant increase of aerosol number concentrations in air masses crossing a densely trafficked sea area. Oceanologia 58, 1–12.: doi:10.1016/j.oceano.2015.08.001
  • Kikas, Ü., Mirme, A., Tamm, E. and Raunemaa, T. 1996. Statistical characteristics of aerosol in Baltic Sea region. J. Geophys. Res. Atmospheres. 101, 19319–19327. doi:10.1029/95JD03758
  • Kikas, Ü., Reinart, A., Pugatshova, A., Tamm, E. and Ulevicius, V. 2008. Microphysical, chemical and optical aerosol properties in the Baltic Sea region. Atmospheric Res. 90, 211–222. 2008. doi:10.1016/j.atmosres.2008.02.009
  • Köllner, F., Schneider, J., Willis, M. D., Klimach, T., Helleis, F. and co-authors. 2017. Particulate trimethylamine in the summertime Canadian high Arctic lower troposphere. Atmos. Chem. Phys. 17, 13747–13766.: 2017. doi:10.5194/acp-17-13747-2017
  • Kristensson, A., Dal Maso, M., Swietlicki, E., Hussein, T., Zhou, J. and co-authors. 2008. Characterization of new particle formation events at a background site in Southern Sweden: relation to air mass history. Tellus B Chem. Phys. Meteorol. 60, 330–344.: 2008. doi:10.1111/j.1600-0889.2008.00345.x
  • Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A. and co-authors. 2004. Formation and growth rates of ultrafine atmospheric particles: a review of observations. J. Aerosol Sci. 35, 143–176.: doi:10.1016/j.jaerosci.2003.10.003
  • Kuśmierczyk-Michulec, J. and Marks, R. 2000. The influence of sea-salt aerosols on the atmospheric extinction over the Baltic and the north seas. J. Aerosol Sci. 31, 1299–1316. doi:10.1016/S0021-8502(00)00032-X
  • Kuśmierczyk-Michulec, J., Schulz, M., Ruellan, S., Krüger, O., Plate, E. and co-authors. 2001. Aerosol composition and related optical properties in the marine boundary layer over the Baltic Sea. J. Aerosol Sci. 32, 933–955.: doi:10.1016/S0021-8502(00)00122-1
  • Laborde, M., Mertes, P., Zieger, P., Dommen, J., Baltensperger, U. and co-authors. 2012a. Sensitivity of the single particle soot photometer to different black carbon types. Atmos. Meas. Tech. 5, 1031–1043. 2012a. doi:10.5194/amt-5-1031-2012
  • Laborde, M., Schnaiter, M., Linke, C., Saathoff, H., Naumann, K.-H. and co-authors. 2012b. Single particle soot photometer intercomparison at the AIDA chamber. Atmos. Meas. Tech. 5, 3077–3097.: 2012b. doi:10.5194/amt-5-3077-2012
  • Laborde, M., Crippa, M., Tritscher, T., Jurányi, Z., Decarlo, P. F. and co-authors. 2013. Black carbon physical properties and mixing state in the European megacity Paris. Atmos. Chem. Phys. 13, 5831–5856.: 2013. doi:10.5194/acp-13-5831-2013
  • Lansø, A. S., Bendtsen, J., Christensen, J. H., Sørensen, L. L., Chen, H. and co-authors. 2015. Sensitivity of the air–sea CO2 exchange in the Baltic Sea and Danish inner waters to atmospheric short-term variability. Biogeosciences 12, 2753–2772. doi:, 2015. doi:10.5194/bg-12-2753-2015
  • Leaitch, W. R., Lohmann, U., Russell, L. M., Garrett, T., Shantz, N. C. and co-authors. 2010. Cloud albedo increase from carbonaceous aerosol. Atmos. Chem. Phys. 10, 7669–7684. doi:, 2010. doi:10.5194/acp-10-7669-2010
  • Liu, D., Whitehead, J., Alfarra, M. R., Reyes-Villegas, E., Spracklen, D. V. and co-authors. 2017. Black-carbon absorption enhancement in the atmosphere determined by particle mixing state. Nature Geosci. 10, 184–188. doi:10.1038/ngeo2901
  • Massoli, P., Kebabian, P. L., Onasch, T. B., Hills, F. B. and Freedman, A. 2010. Aerosol Light Extinction Measurements by Cavity Attenuated Phase Shift (CAPS) Spectroscopy: Laboratory Validation and Field Deployment of a Compact Aerosol Particle Extinction Monitor. Aerosol Sci. Technol. 44, 428–435. doi:10.1080/02786821003716599
  • Moffet, R. C. and Prather, K. A. 2009. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl. Acad. Sci. 106, 11872–11877. doi:10.1073/pnas.0900040106
  • Morgan, W. T., Allan, J. D., Bower, K. N., Esselborn, M., Harris, B. and co-authors. 2010. Enhancement of the aerosol direct radiative effect by semi-volatile aerosol components: airborne measurements in North-Western Europe. Atmos. Chem. Phys. 10, 8151–8171. 2010. doi:10.5194/acp-10-8151-2010
  • Moteki, N. and Kondo, Y. 2010. Dependence of laser-induced incandescence on physical properties of black carbon aerosols: measurements and theoretical interpretation. Aerosol Sci. Technol. 44, 663–675. 2010. doi:10.1080/02786826.2010.484450
  • Moteki, N., Kondo, Y. and Nakamura, S. 2010. Method to measure refractive indices of small nonspherical particles: application to black carbon particles. J. Aerosol Sci. 41, 513–521. 2010. doi:10.1016/j.jaerosci.2010.02.013
  • Neubauer, K. R., Johnston, M. V. and Wexler, A. S. 1998. Humidity effects on the mass spectra of single aerosol particles. Atmos. Environ. 32, 2521–2529. doi:10.1016/S1352-2310(98)00005-3
  • O’Dowd, C. D. and Leeuw, G. 2007. de: Marine aerosol production: a review of the current knowledge. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 365, 1753–1774. doi:10.1098/rsta.2007.2043
  • Omstedt, A., Edman, M., Claremar, B. and Rutgersson, A. 2015. Modelling the contributions to marine acidification from deposited SOx, NOx, and NHx in the Baltic Sea: past and present situations. Cont. Shelf Res 111, 234–249. 2015. doi:10.1016/j.csr.2015.08.024
  • Ovadnevaitė, J., Kvietkus, K. and Šakalys, J. 2007. Evaluation of the impact of long-range transport and aerosol concentration temporal variations at the Eastern Coast of the Baltic Sea. Environ. Monit. Assess. 132, 365–375. doi:10.1007/s10661-006-9540-y
  • Petzold, A., Hasselbach, J., Lauer, P., Baumann, R., Franke, K. and co-authors. 2008. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmos. Chem. Phys. 8, 2387–2403. doi:10.5194/acp-8-2387-2008
  • Petzold, A., Onasch, T., Kebabian, P. and Freedman, A. 2013. Intercomparison of a Cavity Attenuated Phase Shift-based extinction monitor (CAPS PMex) with an integrating nephelometer and a filter-based absorption monitor. Atmos. Meas. Tech. 6, 1141–1151. 2013. doi:10.5194/amt-6-1141-2013
  • Petzold, A., Thouret, V., Gerbig, C., Zahn, A., Brenninkmeijer, C. A. M. and co-authors. 2015. Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus B Chem. Phys. Meteorol. 68, 28452.
  • Plauskaite, K., Ulevicius, V., Spirkauskaite, N., Bycenkiene, S., Zielinski, T. and co-authors. 2010. Observations of new particle formation events in the South-Eastern Baltic Sea. Oceanologia 52, 53–75.: doi:10.5697/oc.52-1.053
  • Plauškaitė, K., Špirkauskaitė, N., Byčenkienė, S., Kecorius, S., Jasinevičienė, D. and co-authors. 2017. Characterization of aerosol particles over the southern and South-Eastern Baltic Sea. Mar. Chem. 190, 13–27.: 2017. doi:10.1016/j.marchem.2017.01.003
  • Prather, K. A., Bertram, T. H., Grassian, V. H., Deane, G. B., Stokes, M. D. and co-authors. 2013. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol. Proc. Natl. Acad. Sci. 110, 7550–7555.: doi:10.1073/pnas.1300262110
  • Rosati, B., Herrmann, E., Bucci, S., Fierli, F., Cairo, F. and co-authors. 2016. Studying the vertical aerosol extinction coefficient by comparing in situ airborne data and elastic backscatter lidar. Atmos. Chem. Phys. 16, 4539–4554.: doi:, 2016. doi:10.5194/acp-16-4539-2016
  • Roth, A., Schneider, J., Klimach, T., Mertes, S., van Pinxteren, D. and co-authors. 2016. Aerosol properties, source identification, and cloud processing in orographic clouds measured by single particle mass spectrometry on a central European mountain site during HCCT-2010. Atmos. Chem. Phys. 16, 505–524.: doi:, 2016. doi:10.5194/acp-16-505-2016
  • Russell, L. M., Seinfeld, J. H., Flagan, R. C., Ferek, R. J., Hegg, D. A. and co-authors. 1999. Aerosol dynamics in ship tracks. J. Geophys. Res. Atmospheres 104, 31077–31095.: 1999. doi:10.1029/1999JD900985
  • Rutgersson, A., Norman, M. and Åström, G. 2009. Atmospheric CO2 variation over the Baltic Sea and the impact on air–sea exchange. Boreal Enviorn. Res. 14, 238–249.
  • Rutgersson, A., Jaagus, J., Schenk, F., Stendel, M., Bärring, L. and co-authors. 2015. Recent Change—Atmosphere, in Second Assessment of Climate Change for the Baltic Sea Basin. Springer, Cham, pp. 69–97.
  • Schlager, H., Baumann, R., Lichtenstern, M., Petzold, A., Arnold, F. and co-authors. 2006. Aircraft-based trace gas measurements in a primary European ship corridor. TAC-Conf. Oxf. UK. 83–88.
  • Schlesinger, W. H., Klein, E. M. and Vengosh, A. 2017. Global biogeochemical cycle of vanadium. Proc. Natl. Acad. Sci. USA. 114, E11092–E11100. doi:10.1073/pnas.1715500114
  • Schmidt, S., Schneider, J., Klimach, T., Mertes, S., Schenk, L. P. and co-authors. 2017. Online single particle analysis of ice particle residuals from mountain-top mixed-phase clouds using laboratory derived particle type assignment. Atmos. Chem. Phys. 17, 575–594.: doi:, 2017. doi:10.5194/acp-17-575-2017
  • Schulz, H., Bozem, H., Zanatta, M., Leaitch, W. R., Herber, A. B. and co-authors. 2018. High–Arctic aircraft measurements characterising black carbon vertical variability in spring and summer. Atmos. Chem. Phys. 19, 2361–2384. doi:10.5194/acp-19-2361-2019
  • Seibert, P. and Frank, A. 2004. Source-receptor matrix calculation with a Lagrangian particle dispersion model in backward mode. Atmos. Chem. Phys. 4, 51–63. doi:, 2004. doi:10.5194/acp-4-51-2004
  • Seinfeld, J. H. and Pandis, S. N. 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd Edition, (eds. J. H. Seinfeld and S. N. Pandis). John Wiley & Sons, Inc., Hoboken, New Jersey.
  • Sempreviva, A. M. and Gryning, S.-E. 2000. Mixing height over water and its role on the correlation between temperature and humidity fluctuations in the unstable surface layer. Bound.-Layer Meteorol. 97, 273–291. doi:10.1023/A:1002749729856
  • Seyler, A., Wittrock, F., Kattner, L., Mathieu-Üffing, B., Peters, E. and co-authors. 2017. Monitoring shipping emissions in the German Bight using MAX-DOAS measurements. Atmos. Chem. Phys. 17, 10997–11023. doi:, 2017. doi:10.5194/acp-17-10997-2017
  • Shafer, M. M., Toner, B. M., Overdier, J. T., Schauer, J. J., Fakra, S. C. and co-authors. 2012. Chemical speciation of vanadium in particulate matter emitted from diesel vehicles and urban atmospheric aerosols. Environ. Sci. Technol. 46, 189–195. doi:10.1021/es200463c
  • Song, C. H., Chen, G., Hanna, S. R., Crawford, J. and Davis, D. D. 2003. Dispersion and chemical evolution of ship plumes in the marine boundary layer: Investigation of O3/NOy/HOx chemistry. J. Geophys. Res. 4143. doi:10.1029/2002JD002216, D4
  • Stephens, M., Turner, N. and Sandberg, J. 2003. Particle identification by laser-induced incandescence in a solid-state laser cavity. Appl. Opt. 42, 3726–3736. doi:10.1364/AO.42.003726
  • Stock, M., Cheng, Y. F., Birmili, W., Massling, A., Wehner, B. and co-authors. 2011. Hygroscopic properties of atmospheric aerosol particles over the Eastern Mediterranean: implications for regional direct radiative forcing under clean and polluted conditions. Atmos. Chem. Phys. 11, 4251–4271. doi:. doi:10.5194/acp-11-4251-2011
  • Stohl, A. 2006. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res. 111, D11306. doi:10.1029/2005JD006888
  • Stohl, A., Aamaas, B., Amann, M., Baker, L. H., Bellouin, N. and co-authors. 2015. Evaluating the climate and air quality impacts of short-lived pollutants. Atmos. Chem. Phys. 15, 10529–10566.: 2015. doi:10.5194/acp-15-10529-2015
  • Subramanian, R., Kok, G. L., Baumgardner, D., Clarke, A., Shinozuka, Y. and co-authors. 2010. Black carbon over Mexico: the effect of atmospheric transport on mixing state, mass absorption cross-section, and BC/CO ratios. Atmos. Chem. Phys. 10, 219–237. 2010. doi:10.5194/acp-10-219-2010
  • Tian, J., Riemer, N., West, M., Pfaffenberger, L., Schlager, H. and co-authors. 2014. Modeling the evolution of aerosol particles in a ship plume using PartMC-MOSAIC. Atmos. Chem. Phys. 14, 5327–5347. 2014. doi:10.5194/acp-14-5327-2014
  • Tunved, P., Hansson, H.-C., Kulmala, M., Aalto, P., Viisanen, Y. and co-authors. 2003. One year boundary layer aerosol size distribution data from five nordic background stations. Atmos. Chem. Phys. 3, 2183–2205.: 2003. doi:10.5194/acp-3-2183-2003
  • Turner, D. R., Edman, M., Gallego-Urrea, J. A., Claremar, B., Hassellöv, I.-M. and co-authors. 2017. The potential future contribution of shipping to acidification of the Baltic Sea. Ambio. 47, 1–11. doi: 10.1007/s13280-017-0950-6
  • Ulevicius, V., Mordas, G. and Plauškaitė, K. 2002. Evolution of aerosol particle size distribution in the coastal environment: effect of relative humidity, SO2 and NO2. Environ.Chem. Phys. 24, 13–17.
  • Viana, M., Amato, F., Alastuey, A., Querol, X., Moreno, T. and co-authors. 2009. Chemical tracers of particulate emissions from commercial shipping. Environ. Sci. Technol. 43, 7472–7477.: doi:10.1021/es901558t
  • Wang, W., Rood, M. J., Carrico, C. M., Covert, D. S., Quinn, P. K. and co-authors. 2007. Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study-Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition: RH-CONTROLLED NEPHELOMETRY MEASUREMENTS. J. Geophys. Res. Atmospheres. 112, D10S23.
  • Zanatta, M., Gysel, M., Bukowiecki, N., Müller, T., Weingartner, E. and co-authors. 2016. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ. 145, 346–364. 2016. doi:10.1016/j.atmosenv.2016.09.035
  • Zieliński, T. and Zieliński, A. 2002. Aerosol extinction and aerosol optical thickness in the atmosphere over the Baltic Sea determined with lidar. J. Aerosol Sci. 33, 907–921. doi:10.1016/S0021-8502(02)00043-5