1,061
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Ozone exchange within and above an irrigated Californian orchard

, , , , , , & ORCID Icon show all
Pages 1-17 | Received 03 Aug 2018, Accepted 13 Dec 2019, Published online: 11 Feb 2020

References

  • Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D. and co-authors. 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc. 82, 2415–2434. doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2
  • Bao, J.-W., Michelson, S. A., Persson, P. O. G., Djalalova, I. V., Wilczak, J. M. and co-authors. 2008. Observed and WRF-simulated low-level winds in a high-ozone episode during the Central California Ozone Study. J. Appl. Meteorol. Climatol. 47, 2372–2394. doi:10.1175/2008JAMC1822.1
  • Bianco, L., Djalalova, I. V., King, C. W. and Wilczak, J. M. 2011. Diurnal evolution and annual variability of boundary-layer height and its correlation to other meteorological variables in California’s central valley. Boundary Layer Meteorol. 140, 491–511. doi:10.1007/s10546-011-9622-4
  • Bonan, G. B. 2008. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449. doi:10.1126/science.1155121
  • Calvert, J. G. and Stockwell, W. R. 1983. Deviations from the O 3 –NO–NO 2 photostationary state in tropospheric chemistry. Can. J. Chem. 61, 983–992. doi:10.1139/v83-174
  • Cellier, P. and Brunet, Y. 1992. Flux-gradient relationships above tall plant canopies. Agric. For. Meteorol. 58, 93–117. 90113-I. doi:10.1016/0168-1923(92)90113-I
  • De Ridder, K. 2010. Bulk transfer relations for the roughness sublayer. Boundary Layer Meteorol. 134, 257–267. doi:10.1007/s10546-009-9450-y
  • Denmead, O. T. and Bradley, E. F. 1987. On scalar transport in plant canopies. Irrig. Sci. 8, 131–149.
  • Dupont, S. and Patton, E. G. 2012. Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: The CHATS experiment. Atmos. Chem. Phys. 12, 5913–5935. doi:10.5194/acp-12-5913-2012
  • Fares, S., Savi, F., Muller, J., Matteucci, G. and Paoletti, E. 2014. Simultaneous measurements of above and below canopy ozone fluxes help partitioning ozone deposition between its various sinks in a Mediterranean Oak Forest. Agric. For. Meteorol. 198–199, 181–191. doi:10.1016/j.agrformet.2014.08.014
  • Fares, S., Weber, R., Park, J.-H., Gentner, D., Karlik, J., and co-authors. 2012. Ozone deposition to an orange orchard: Partitioning between stomatal and non-stomatal sinks. Environ. Pollut. 169, 258–266. doi:10.1016/j.envpol.2012.01.030
  • Finnigan, J. J., Shaw, R. H. and Patton, E. G. 2009. Turbulence structure above a vegetation canopy. J. Fluid Mech. 637, 387–424. doi:10.1017/S0022112009990589
  • Fitzjarrald, D. R. and Lenschow, D. H. 1983. Mean concentration and flux profiles for chemically reactive species in the atmospheric surface layer. Atmospheric Environ. 17, 2505–2512. doi:10.1016/0004-6981(83)90076-8
  • Fujita, E. M., Campbell, D. E. and Snorradottir, T. 2005. Central California Ozone Study (CCOS) Data Validation. Final Report, California Air Resources Board, Sacramento, CA. Technical Report, California Air Resources Board, Sacramento, CA. Online at http://www.arb.ca.gov/airways/ccos/ccos.htm
  • Gao, W., Shaw, R. H. and Paw, K. T. 1989. Observation of organized structure in turbulent flow within and above a forest canopy. In: Boundary Layer Studies and Applications. Springer, Netherlands, pp. 349–377.
  • Gao, W., Wesely, M. L. and Lee, I. Y. 1991. A numerical study of the effects of air chemistry on fluxes of NO, NO2, and O3 near the surface. J. Geophys. Res. 96, 18761–18769. doi:10.1029/91JD02106
  • Garratt, J. R. 1980. Surface influence upon vertical profiles in the atmospheric near-surface layer. Q. J. R. Meteorol. Soc. 106, 803–819. doi:10.1002/qj.49710645011
  • Gerken, T., Chamecki, M. and Fuentes, J. D. 2017. Air-parcel residence times within forest canopies. Boundary Layer Meteorol. 165, 29–54. 1007/s10546-017-0269-7. doi:10.1007/s10546-017-0269-7
  • Griffin, R. J., Beckman, P. J., Talbot, R. W., Sive, B. C., Varner, R. K. and co-authors. 2007. Deviations from ozone photostationary state during the International Consortium for Atmospheric Research on Transport and Transformation 2004 campaign: Use of measurements and photochemical modeling to assess potential causes. J. Geophys. Res. Atmos. 112, D10S07.
  • Harman, I. N. and Finnigan, J. J. 2007. A simple unified theory for flow in the canopy and roughness sublayer. Boundary Layer Meteorol. 123, 339–363. doi:10.1007/s10546-006-9145-6
  • Harman, I. N. and Finnigan, J. J. 2008. Scalar concentration profiles in the canopy and roughness sublayer. Boundary Layer Meteorol. 129, 323–351. doi:10.1007/s10546-008-9328-4
  • Högström, U. 1988. Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. In: Topics in Micrometeorology. A Festschrift for Arch Dyer. Springer, pp. 55–78.
  • Iwata, H., Harazono, Y. and Ueyama, M. 2010. Influence of source/sink distributions on flux gradient relationships in the roughness sublayer over an open forest canopy under unstable conditions. Boundary Layer Meteorol. 136, 391–405. doi:10.1007/s10546-010-9513-0
  • Jacob, D. 1999. Introduction to Atmospheric Chemistry. New Jersey, US: Princeton University Press, p. 280.
  • Jacobson, M. Z. 2005. Fundamentals of Atmospheric Modeling. Cambridge: Cambridge University Press.
  • Karl, T., Guenther, A., Turnipseed, A., Patton, E. G. and Jardine, K. 2008. Chemical sensing of plant stress at the ecosystem scale”. English. Biogeosciences 5, 1287–1294. doi:10.5194/bg-5-1287-2008
  • Kramm, G., Müller, H., Fowler, D., Höfken, K. D., Meixner, F. X. and co-authors. 1991. A modified profile method for determining the vertical fluxes of NO, NO2, ozone, and HN03 in the atmospheric surface layer. J. Atmos. Chem. 13, 265–288. doi:10.1007/BF00058135
  • Lamaud, E., Carrara, A., Brunet, Y., Lopez, A. and Druilhet, A. 2002. Ozone fluxes above and within a pine forest canopy in dry and wet conditions. Atmos. Environ. 36, 77–88. doi:10.1016/S1352-2310(01)00468-X
  • Min, K. E., Pusede, S. E., Browne, E. C., LaFranchi, B. W. and Cohen, R. C. 2014. Eddy covariance fluxes and vertical concentration gradient measurements of NO and NO2 over a ponderosa pine ecosystem: observational evidence for within-canopy chemical removal of NOx. Atmos. Chem. Phys. 14, 5495–5512. doi:10.5194/acp-14-5495-2014
  • Moene, F. A. and Van Dam, C. J. 2014. Transport in the Atmosphere-Vegetation-Soil Continuum. New York, NY: Cambridge University Press.
  • Mölder, M., Grelle, A., Lindroth, A. and Halldin, S. 1999. Flux-profile relationships over a boreal forest—roughness sublayer corrections. Agric. For. Meteorol. 98, 645–658.
  • Monin, A. S. and Obukhov, A. M. 1954. Basic laws of turbulent mixing in the surface layer of the atmosphere. Inst. Contract Number 24, 163–187.
  • Murphy, J. G., Day, D. A., Cleary, P. A., Wooldridge, P. J., Millet, D. B. and co-authors. 2007. The weekend effect within and downwind of Sacramento – Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity. Atmos. Chem. Phys. 7, 5327–5339. doi:10.5194/acp-7-5327-2007
  • Patton, E. G., Davis, K. J., Barth, M. C. and Sullivan, P. P. 2001. Decaying scalars emitted by a forest canopy: a numerical study. Boundary Layer Meteorol. 100, 91–129. doi:10.1023/A:1019223515444
  • Patton, E. G., Horst, T. W., Sullivan, P. P., Lenschow, D. H., Oncley, S. P. and co-authors. 2011. The canopy horizontal array turbulence study. Bull. Am. Meteorol. Soc. 92, 593–611. 1. doi:10.1175/2010BAMS2614.1
  • Paulson, C. A. 1970. The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteorol. 9, 857–861. doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2
  • Physick, W. L. and Garratt, J. R. 1995. Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain. Boundary Layer Meteorol. 74, 55–71. doi:10.1007/BF00715710
  • Raupach, M. R. 1979. Anomalies in flux-gradient relationships over forest. Boundary Layer Meteorol. 16, 467–486. doi:10.1007/BF03335385
  • Raupach, M. R. 1989a. Applying Lagrangian fluid mechanics to infer scalar source distributions from concentration profiles in plant canopies. Agric. For. Meteorol. 47, 85–108. doi:10.1016/0168-1923(89)90089-0
  • Raupach, M. R. 1989b. A practical Lagrangian method for relating scalar concentrations to source distributions in vegetation canopies. Q. J. R. Meteorol. Soc. 115, 609–632. doi:10.1002/qj.49711548710
  • Raupach, M. R., Finnigan, J. J. and Brunei, Y. 1996. Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary Layer Meteorol. 78, 351–382. doi:10.1007/BF00120941
  • Rohrer, F. and Berresheim, H. 2006. Strong correlation between levels of tropospheric hydroxyl radicals and solar ultraviolet radiation. Nature 442, 184–187. doi:10.1038/nature04924
  • Seinfeld, J. H. and Pandis, S. N. 2016. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. New Jersey: John Wiley and Sons.
  • Seok, B., Helmig, D., Ganzeveld, L., Williams, M. W. and Vogel, C. S. 2013. Dynamics of nitrogen oxides and ozone above and within a mixed hardwood forest in northern Michigan. Atmos. Chem. Phys. 13, 7301–7320. doi:10.5194/acp-13-7301-2013
  • Shapkalijevski, M., Moene, A. F., Ouwersloot, H. G., Patton, E. G. and Vilà-Guerau de Arellano, J. 2016. Influence of canopy seasonal changes on turbulence parameterization within the roughness sublayer over an orchard canopy. J. Appl. Meteorol. Climatol. 55, 1391–1407. doi:10.1175/JAMC-D-15-0205.1
  • Shapkalijevski, M. M., Ouwersloot, H. G., Moene, A. F. and de Arrellano, J. V.-G. 2017. Integrating canopy and large-scale atmospheric effects in convective boundary layer dynamics during CHATS experiment. Atmos. Chem. Phys. 17, 1623–1640. doi:10.5194/acp-17-1623-2017
  • Sillman, S., Logan, J. A. and Wofsy, S. C. 1990. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes. J. Geophys. Res. 95, 1837–1851. doi:10.1029/JD095iD02p01837
  • Simard, M., Pinto, N., Fisher, J. B. and Baccini, A. C. G. 2011. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. 116, G04021. doi:10.1029/2011JG001708
  • Stull, R. B. 1988. An Introduction to Boundary Layer Meteorology. Vol. 13. New York, US: Springer Science and Business Media, p. 670.
  • Thom, A. S., Stewart, J. B., Oliver, H. R. and Gash, J. H. C. 1975. Comparison of aerodynamic and energy budget estimates of fluxes over a pine forest. Q. J. R. Meteorol. Soc. 101, 93–105. doi:10.1002/qj.49710142708
  • Vila, G. D., Arellano, J., Dosio, A., Vinuesa, J.-F., Holtslag, A. A. M. and co-authors. 2004. The dispersion of chemically reactive species in the atmospheric boundary layer. Meteorol. Atmos. Phys. 87, 23–38. 0059–2.
  • Vila-Guerau De Arellano, J. and Duynkerke, P. G. 1992. Influence of chemistry on the flux-gradient relationships for the NO-O3-NO2 system. Boundary Layer Meteorol. 61, 375–387. doi:10.1007/BF00119098
  • Vilà-Guerau De Arellano, J., van Heerwaarden, C. C., van Stratum, B. J. H. and van den Dries, K. 2015. Atmospheric Boundary Layer: Integrating Chemistry and Land Interactions. 1st ed. Cambridge, UK: Cambridge University Press, pp. 1–283.
  • Wilczak, J. M., Oncley, S. P. and Stage, S. A. 2001. Sonic anemometer tilt correction algorithms. Boundary Layer Meteorol. 99, 127–150. doi:10.1023/A:1018966204465