1,620
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Deuterium–hydrogen ratios, electrical conductivity and nitrate for high-resolution dating of polar ice cores

, &
Pages 1-6 | Received 17 Sep 2019, Accepted 18 Mar 2020, Published online: 09 Apr 2020

References

  • Barlow, L. K. 1994. Evaluation of Seasonal to Decadal Scale Deuterium and Deuterium Excess Signals, GISP2 Ice Core, Summit, Greenland, A.D. 1270–1985 (PhD Thesis). University of Colorado.
  • Beer, J., Blinov, A., Bonani, G., Finkel, R. C., Hofmann, H. J. and co-authors. 1990. Use of Be-10 in polar ice to trace the 11-year cycle of solar activity. Nature 347, 164–166. doi:10.1038/347164a0
  • Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–468.
  • Dee, M., Pope, B., Miles, D., Manning, S. and Miyake, F. 2016. Supernovae and single-year anomalies in the atmospheric radiocarbon record. Radiocarbon 59, 293–302.
  • Dreschhoff, G. A. M. and Laird, C. M. 2000. Deuterium–Hydrogen Ratios in Polar Ice Cores by FTIR Methods. Final Report. National Science Foundation Office of Polar Programs. Grant #NSF – OPP – 9813607, KUCR 15961. University of Kansas, Lawrence, Kansas, Ku Center for Research.
  • Dreschhoff, G. A. M. and Zeller, E. J. 1994. 415-Year Greenland ice core record of solar proton events dated by volcanic eruptive episodes, Institute Tertiary-Quaternary Studies. TER-QUA Symp. Ser. 2, 1–24.
  • Faure, G. 1977. Principles of Isotope Geology. Wiley, New York, 324 pp.
  • Hambaryan, V. V. and Neuhäuser, R. A. 2013. Galactic short gamma-ray burst as cause for the 14C peak in AD 774/5. Monthly Notices R. Astron. Soc. 430, 32–36. doi:10.1093/mnras/sts378
  • Jouzel, J., Merlivat, L., Petit, J. R. and Lorius, C. 1983. Climate information over the last century deduced from a detailed isotopic record in the South Pole snow. J. Geophys. Res. 88, 2693–2703. doi:10.1029/JC088iC04p02693
  • Jouzel, J., Merlivat, L., Pourchet, M. and Lorius, C. 1979. A continuous record of artificial tritium fallout at the South Pole (1954–1978). Earth Planet Sci. Lett. 45, 188–200. doi:10.1016/0012-821X(79)90120-1
  • Jull, A. J. T., Panyushkina, I. P., Lange, T. E., Kukarskih, V. V., Myglan, V. S. and co-authors. 2014. Excursions in the 14C record at A.D. 774–775 in tree rings from Russia and America. Geophys. Res. Lett. 41, 3004–3010. doi:10.1002/2014GL059874
  • Kilpua, E. K. J., Olspert, N., Grigorievskiy, A., Käpylä, M. J., Tanskanen, E. I. and co-authors. 2015. Statistical study of strong and extreme geomagnetic disturbances and solar cycle characteristics. Astrophys. J. 806, 272. doi:10.1088/0004-637X/806/2/272
  • Lamarre, D. and Baudais, F. 1990. The MB Series FT-IR Mechanical Design from Bomem Inc. Bomem Document, No. MB 8902, Nov. 1990. BOMEM, Hartmann and Braun, Quebec, Canada.
  • Leblanc, M. 1993. Calibration for Measurement of D2O in Water Solutions. Bomem, Inc., Quebec, Canada.
  • Litvak, I., Yaakov, A. and Cohen, H. 2018. On-line in situ determination of deuterium content in water via FTIR spectroscopy. RSC Adv. 8, 28472–28479. doi:10.1039/C8RA03312A
  • Mayewski, P. A., Meeker, L. D., Whitlow, S., Twickler, M. S., Morrison, M. C. and co-authors. 1993. The atmosphere during the Younger Dryas. Science 261, 195–197. doi:10.1126/science.261.5118.195
  • Mayewski, P. A., Twickler, M. S., Whitlow, S., Meeker, L. D., Yang, Q. and co-authors. 1996. climate change during the last deglaciation in Antarctica. Science 272, 1636–1638. doi:10.1126/science.272.5268.1636
  • Mekhaldi, F., Muscheler, R., Adolphi, F., Aldahan, A., Beer, J. and co-authors. 2015. Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nat. Commun. 6, 8611. doi:10.1038/ncomms9611
  • Melott, A. L., Thomas, B. C., Dreschhoff, G. and Johnson, C. K. 2010. Cometary airbursts and atmospheric chemistry: Tunguska and a candidate Younger Dryas event. Geology 38, 355–358. doi:10.1130/G30508.1
  • Palais, J. M., Delmas, R., Briat, M. and Jouzel, J. 1983. Liquid conductivity of a 44-meter Firn Core, McMurdo ice shelf. Antarctic J. 18, 106–107.
  • Smart, D. F., Shea, M. A., Melott, A. L. and Laird, C. M. 2014. Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events. J. Geophys. Res. Space Phys. 119, 9430–9440. doi:10.1002/2014JA020378
  • Sukhodolov, T., Usoskin, I., Rozanov, E., Asvestari, E., Ball, W. T. and co-authors. 2017. Atmospheric impacts of the strongest known solar particle storm of 775 AD. Sci. Rep. 7, 45257. doi:10.1038/srep45257
  • Thornton, V. and Condon, F. E. 1950. Infrared spectrometric determination of deuterium oxide in water. Anal. Chem. 22, 690–691. doi:10.1021/ac60041a021
  • Uusitalo, J., Arppe, L., Hackman, T., Helama, S., Kovaltsov, G. and co-authors. 2018. Solar superstorm of AD 774 recorded subannually by Arctic tree rings. Nat. Commun. 9, 3495. doi:10.1038/s41467-018-05883-1
  • Wolff, E. W., Barbante, C., Becagli, S., Bigler, M., Boutron, C. F. and co-authors. 2010. Changes in environment over the last 800,000 years from chemical analysis of the EPICA Dome C ice core. Quat. Sci. Rev. 29, 285–295. doi:10.1016/j.quascirev.2009.06.013
  • Wolff, E. W., Bigler, M., Curran, M. A. J., Dibb, J. E., Frey, M. M. and co-authors. 2012. The Carrington event not observed in most ice core nitrate records. Geophys. Res. Lett. 39. L08503, doi:10.1029/2012GL051603
  • Wolff, E. W., Jones, A. E., Bauguitte, S. J.-B. and Salmon, R. A. 2008. The interpretation of spikes and trends in concentration of nitrate in polar ice cores, based on evidence from snow and atmospheric measurements. Atmos. Chem. Phys. 8, 5627–5634. doi:10.5194/acp-8-5627-2008
  • Zeller, E. J. and Dreschhoff, G. A. M. 1995. Anomalous nitrate concentrations in polar ice – do they result from solar particle injections into the polar atmosphere? Geophys. Res. Lett. 22, 2521–2524. doi:10.1029/95GL02560