3,542
Views
29
CrossRef citations to date
0
Altmetric
Research Article

Deuterium excess and 17O-excess variability in meteoric water across the Pacific Northwest, USA

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-17 | Received 22 Jul 2019, Accepted 17 May 2020, Published online: 12 Jun 2020

References

  • Angert, A., Cappa, C. D. and DePaolo, D. J. 2004. Kinetic 17O effects in the hydrologic cycle: Indirect evidence and implications. Geochim. Cosmochim. Acta 68, 3487–3495. doi:10.1016/j.gca.2004.02.010
  • Barkan, E. and Luz, B. 2005. High precision measurements of 17O/16O and 18O/16O ratios in H2O. Rapid Commun. Mass Spectrom. 19, 3737–3742. doi:10.1002/rcm.2250
  • Barkan, E. and Luz, B. 2007. Diffusivity fractionations of H2(16)O/H2(17)O and H2(16)O/H2(18)O in air and their implications for isotope hydrology. Rapid Commun. Mass Spectrom. 21, 2999–3005. doi:10.1002/rcm.3180
  • Barry, R. 2008. Mountain Weather and Climate. 3rd ed. Cambridge: Cambridge University Press, p. 506.
  • Bechtel, C. and Zahn, A. 2003. The isotope composition of water vapour: A powerful tool to study transport and chemistry of middle atmospheric water vapour. Atmos. Chem. Phys. Discuss. 3, 3991–4036. doi:10.5194/acpd-3-3991-2003
  • Benetti, M., Reverdin, G., Pierre, C., Merlivat, L., Risi, C. and co-authors. 2014. Deuterium excess in marine water vapor: Dependency on relative humidity and surface wind speed during evaporation. J. Geophys. Res. Atmos. 119, 584–593. doi:10.1002/2013JD020535
  • Bershaw, J. 2018. Controls on deuterium excess across Asia. Geosciences 8, 257. doi:10.3390/geosciences8070257
  • Bershaw, J., Garzione, C. N., Higgins, P., MacFadden, B. J., Anaya, F. and co-authors. 2010. Spatial-temporal changes in Andean plateau climate and elevation from stable isotopes of mammal teeth. Earth Planet. Sci. Lett. 289, 530–538. doi:10.1016/j.epsl.2009.11.047
  • Bershaw, J., Penny, S. M. and Garzione, C. N. 2012. Stable isotopes of modern water across the Himalaya and eastern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res. 117, n/a–n/a. doi:10.1029/2011JD016132
  • Bershaw, J., Saylor, J. E., Garzione, C. N., Leier, A. and Sundell, K. E. 2016. Stable isotope variations (δ18O and δD) in modern waters across the Andean Plateau. Geochim. Cosmochim. Acta 194, 310–324. doi:10.1016/j.gca.2016.08.011
  • Best, A. C. 1950. Empirical formulae for the terminal velocity of water drops falling through the atmosphere. Q. J. R. Meteorol. Soc. 76, 302–311. doi:10.1002/qj.49707632905
  • Blossey, P. N., Kuang, Z. and Romps, D. M. 2010. Isotopic composition of water in the tropical tropopause layer in cloud‐resolving simulations of an idealized tropical circulation. J. Geophys. Res 115, D24309. doi:10.1029/2010JD014554
  • Bony, S., Risi, C. and Vimeux, F. 2008. Influence of convective processes on the isotopic composition (δ18O and δD) of precipitation and water vapor in the tropics: 1. Radiative-convective equilibrium and Tropical Ocean–Global Atmosphere–Coupled Ocean-Atmosphere Response Experiment (TOGA-COARE) simulations. J. Geophys. Res. 113, D19305. doi:10.1029/2008JD009942
  • Botsyun, S., Sepulchre, P., Donnadieu, Y., Risi, C., Licht, A. and co-authors. 2019. Revised paleoaltimetry data show low Tibetan Plateau elevation during the Eocene. Science 363, eaaq1436. doi:10.1126/science.aaq1436
  • Caves, J. K., Winnick, M. J., Graham, S. A., Sjostrom, D. J., Mulch, A. and co-authors. 2015. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett. 428, 33–43. doi:10.1016/j.epsl.2015.07.023
  • Craig, H. 1961. Isotopic variations in meteoric waters. Science 133, 1702–1703. doi:10.1126/science.133.3465.1702
  • Cui, J., An, S., Wang, Z., Fang, C., Liu, Y. and co-authors. 2009. Using deuterium excess to determine the sources of high-altitude precipitation: Implications in hydrological relations between sub-alpine forests and alpine meadows. J. Hydrol. 373, 24–33. doi:10.1016/j.jhydrol.2009.04.005
  • Daly, C., Neilson, R. P. and Phillips, D. L. 1994. A statistical-topographic model for mapping climatological precipitation over mountainous terrain. J. Appl. Meteorol. 33, 140–158. doi:10.1175/1520-0450(1994)033<0140:ASTMFM>2.0.CO;2
  • Daly, C., Taylor, G. and Gibson, W. 1997. The PRISM approach to mapping precipitation and temperature. In Proc., 10th AMS Conf. on Applied Climatology. Citeseer, pp. 20–23.
  • Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16, 436–468.
  • Dettinger, M., Redmond, K. and Cayan, D. 2004. Winter orographic precipitation ratios in the Sierra Nevada—Large-scale atmospheric circulations and hydrologic consequences. J. Hydrometeor. 5, 1102–1116. doi:10.1175/JHM-390.1
  • Draxler, R. R. and Hess, G. 1998. An overview of the HYSPLIT_4 modelling system for trajectories. Aust. Meteorol. Mag. 47, 295–308.
  • Ehlers, T. A. and Poulsen, C. J. 2009. Influence of Andean uplift on climate and paleoaltimetry estimates. Earth Planet. Sci. Lett. 281, 238–248. doi:10.1016/j.epsl.2009.02.026
  • Espy, J. 1836. Essays on meteorology. No. IV: North east storms, volcanoes, and columnar clouds. J. Franklin Inst 22, 239–246.
  • Fan, Y., Chen, Y., Li, X., Li, W. and Li, Q. 2015. Characteristics of water isotopes and ice-snowmelt quantification in the Tizinafu River, north Kunlun Mountains, Central Asia. Quat. Int. 380-381, 116–122. doi:10.1016/j.quaint.2014.05.020
  • Feng, R., Poulsen, C. J., Werner, M., Chamberlain, C. P., Mix, H. T. and co-authors. 2013. Early Cenozoic evolution of topography, climate, and stable isotopes in precipitation in the North American Cordillera. Am. J. Sci. 313, 613–648. doi:10.2475/07.2013.01
  • Froehlich, K., Kralik, M., Papesch, W., Rank, D., Scheifinger, H. and co-authors. 2008. Deuterium excess in precipitation of Alpine regions – moisture recycling. Isotopes Environ Health Stud. 44, 61–70. doi:10.1080/10256010801887208
  • Galewsky, J. 2009. Rain shadow development during the growth of mountain ranges: An atmospheric dynamics perspective. J. Geophys. Res. 114, F01018. doi:10.1029/2008JF001085
  • Galewsky, J. and Samuels-Crow, K. 2014. Water vapor isotopic composition of a stratospheric air intrusion: Measurements from the Chajnantor Plateau. J. Geophys. Res. Atmos. 119, 9679–9691. doi:10.1002/2014JD022047
  • Garzione, C. N., Dettman, D. L., Quade, J., DeCelles, P. G. and Butler, R. F. 2000. High times on the Tibetan Plateau; paleoelevation of the Thakkhola Graben. Geology 28, 339–342. doi:10.1130/0091-7613(2000)28<339:HTOTTP>2.0.CO;2
  • Gat, J. and Carmi, I. 1970. Evolution of the isotopic composition of atmospheric waters in the Mediterranean Sea area. J. Geophys. Res. 75, 3039–3048. doi:10.1029/JC075i015p03039
  • Gat, J. R. and Airey, P. L. 2006. Stable water isotopes in the atmosphere/biosphere/lithosphere interface: scaling-up from the local to continental scale, under humid and dry conditions. Global Planet. Change 51, 25–33. doi:10.1016/j.gloplacha.2005.12.004
  • Gupta, S., Deshpande, R., Bhattacharya, S. and Jani, R. 2005. Groundwater δ18O and δD from central Indian Peninsula: Influence of the Arabian Sea and the Bay of Bengal branches of the summer monsoon. J. Hydrol. 303, 38–55. doi:10.1016/j.jhydrol.2004.08.016
  • Hobbs, P. V., Houze, R. A., Jr. and Matejka, T. J. 1975. The dynamical and microphysical structure of an occluded frontal system and its modification by orography. J. Atmos. Sci. 32, 1542–1562. doi:10.1175/1520-0469(1975)032<1542:TDAMSO>2.0.CO;2
  • IAEA/WMO. 2018. Global Network of Isotopes in Precipitation, The GNIP Database. Accessible at: http://isohis.iaea.org.
  • Jouzel, J., Froehlich, K. and Schotterer, U. 1997. Deuterium and oxygen-18 in present-day precipitation: Data and modelling. Hydrol. Sci. J. 42, 747–763. doi:10.1080/02626669709492070
  • Jouzel, J. and Merlivat, L. 1984. Deuterium and oxygen 18 in precipitation: Modeling of the isotopic effects during snow formation. J. Geophys. Res. 89, 11749–11757. doi:10.1029/JD089iD07p11749
  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D. and co-authors. 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  • Kar, N., Garzione, C. N., Jaramillo, C., Shanahan, T., Carlotto, V. and co-authors. 2016. Rapid regional surface uplift of the northern Altiplano plateau revealed by multiproxy paleoclimate reconstruction. Earth Planet. Sci. Lett. 447, 33–47. doi:10.1016/j.epsl.2016.04.025
  • Karim, A. and Veizer, J. 2002. Water balance of the Indus River Basin and moisture source in the Karakoram and western Himalayas: Implications from hydrogen and oxygen isotopes in river water. J. Geophys. Res. 107, 4362. doi:10.1029/2000JD000253
  • Kendall, C. and Coplen, T. B. 2001. Distribution of oxygen‐18 and deuterium in river waters across the United States. Hydrol. Process. 15, 1363–1393. doi:10.1002/hyp.217
  • Kent-Corson, M., Ritts, B., Zhuang, G., Bovet, P., Graham, S. and co-authors. 2009. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau. Earth Planet. Sci. Lett. 282, 158–166. doi:10.1016/j.epsl.2009.03.011
  • Kinzer, G. D. and Gunn, R. 1951. The evaporation, temperature and thermal relaxation-time of freely falling waterdrops. J. Meteorol. 8, 71–83. doi:10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2
  • Kong, Y., Pang, Z. and Froehlich, K. 2013. Quantifying recycled moisture fraction in precipitation of an arid region using deuterium excess. Tellus B 65, 1. doi:10.3402/tellusb.v65i0.19251
  • Kurita, N. and Yamada, H. 2008. The role of local moisture recycling evaluated using stable isotope data from over the middle of the Tibetan Plateau during the monsoon season. J. Hydrometeor. 9, 760–775. doi:10.1175/2007JHM945.1
  • Landais, A., Barkan, E. and Luz, B. 2008. Record of δ18O and 17O-excess in ice from Vostok Antarctica during the last 150,000 years. Geophys. Res. Lett. 35, L02709. doi:10.1029/2007GL032096
  • Landais, A., Risi, C., Bony, S., Vimeux, F., Descroix, L. and co-authors. 2010. Combined measurements of 17O excess and d-excess in African monsoon precipitation: Implications for evaluating convective parameterizations. Earth Planet. Sci. Lett. 298, 104–112. doi:10.1016/j.epsl.2010.07.033
  • Landais, A., Steen-Larsen, H. C., Guillevic, M., Masson-Delmotte, V., Vinther, B. and co-authors. 2012. Triple isotopic composition of oxygen in surface snow and water vapor at NEEM (Greenland). Geochim. Cosmochim. Acta 77, 304–316. doi:10.1016/j.gca.2011.11.022
  • Lawrence, M. G. 2005. The relationship between relative humidity and the dewpoint temperature in moist air: A simple conversion and applications. Bull. Am. Meteorol. Soc. 86, 225–234. doi:10.1175/BAMS-86-2-225
  • Lechler, A. R. and Niemi, N. A. 2012. The influence of snow sublimation on the isotopic composition of spring and surface waters in the southwestern United States: Implications for stable isotope–based paleoaltimetry and hydrologic studies. Geol. Soc. Am. Bull., B30467. 30461 124, 318–334. doi:10.1130/B30467.1
  • Leier, A., McQuarrie, N., Garzione, C. and Eiler, J. 2013. Stable isotope evidence for multiple pulses of rapid surface uplift in the Central Andes, Bolivia. Earth Planet. Sci. Lett. 371-372, 49–58. doi:10.1016/j.epsl.2013.04.025
  • Li, L. and Garzione, C. N. 2017. Spatial distribution and controlling factors of stable isotopes in meteoric waters on the Tibetan Plateau: Implications for paleoelevation reconstruction. Earth Planet. Sci. Lett. 460, 302–314. doi:10.1016/j.epsl.2016.11.046
  • Li, S., Levin, N. E. and Chesson, L. A. 2015. Continental scale variation in 17O-excess of meteoric waters in the United States. Geochim. Cosmochim. Acta 164, 110–126. doi:10.1016/j.gca.2015.04.047
  • Lin, Y., Clayton, R. N., Huang, L., Nakamura, N. and Lyons, J. R. 2013. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere. Proc. Natl. Acad. Sci. 110, 15608–15613. 201313014. doi:10.1073/pnas.1313014110
  • Liotta, M., Favara, R. and Valenza, M. 2006. Isotopic composition of the precipitations in the central Mediterranean: Origin marks and orographic precipitation effects. J. Geophys. Res. 111, 19302. doi:10.1029/2005JD006818
  • Luz, B. and Barkan, E. 2010. Variations of 17O/16O and 18O/16O in meteoric waters. Geochim. Cosmochim. Acta 74, 6276–6286. doi:10.1016/j.gca.2010.08.016
  • MacCready, P. B. Jr, 1955. High and low elevations as thermal source regions. Weather 10, 35–40. doi:10.1002/j.1477-8696.1955.tb00136.x
  • Majoube, M. 1971. Fractionnement en oxygene 18 et en deuterium entre l’eau et sa vapeur. J. Chim. Phys. 68, 1423–1436. doi:10.1051/jcp/1971681423
  • Meijer, H. and Li, W. 1998. The use of electrolysis for accurate δ17O and δ18O isotope measurements in water. Isot. Environ. Health Stud. 34, 349–369. doi:10.1080/10256019808234072
  • Merlivat, L. 1978. Molecular diffusivities of H2 16O, HD16O, and H2 18O in gases. J. Chem. Phys. 69, 2864–2871. doi:10.1063/1.436884
  • Merlivat, L. and Jouzel, J. 1979. Global climatic interpretation of the deuterium‐oxygen 18 relationship for precipitation. J. Geophys. Res. 84, 5029–5033. doi:10.1029/JC084iC08p05029
  • Miller, M. F. 2018. Precipitation regime influence on oxygen triple-isotope distributions in Antarctic precipitation and ice cores. Earth Planet. Sci. Lett. 481, 316–327. doi:10.1016/j.epsl.2017.10.035
  • Mulch, A., Graham, S. A. and Chamberlain, C. P. 2006. Hydrogen isotopes in Eocene river gravels and paleoelevation of the Sierra Nevada. Science 313, 87–89. doi:10.1126/science.1125986
  • NOAA/NCDC. 2010. National Oceanic and Atmospheric Administration and National Climatic Data Center, Asheville, North Carolina, Database accessible at: http://www.ncdc.noaa.gov.
  • Numaguti, A. 1999. Origin and recycling processes of precipitating water over the Eurasian continent: Experiments using an atmospheric general circulation model. J. Geophys. Res. 104, 1957–1972. doi:10.1029/1998JD200026
  • Passey, B. H., Hu, H., Ji, H., Montanari, S., Li, S. and co-authors. 2014. Triple oxygen isotopes in biogenic and sedimentary carbonates. Geochim. Cosmochim. Acta 141, 1–25. doi:10.1016/j.gca.2014.06.006
  • Passey, B. H. and Ji, H. 2019. Triple oxygen isotope signatures of evaporation in lake waters and carbonates: A case study from the western United States. Earth Planet. Sci. Lett. 518, 1–12. doi:10.1016/j.epsl.2019.04.026
  • Pedgley, D. 1970. Heavy rainfalls over Snowdonia. Weather 25, 340–350. doi:10.1002/j.1477-8696.1970.tb04117.x
  • Pfahl, S. and Sodemann, H. 2014. What controls deuterium excess in global precipitation?. Clim. Past 10, 771–781. doi:10.5194/cp-10-771-2014
  • Poage, M. A. and Chamberlain, C. P. 2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters; considerations for studies of paleoelevation change. Am. J. Sci. 301, 1–15. doi:10.2475/ajs.301.1.1
  • Rank, D. and Papesch, W. 2005. Isotopic composition of precipitation in Austria in relation to air circulation patterns and climate. Isotopic composition of precipitation in the Mediterranean basin in relation to air circulation patterns and climate, IAEA-TECDOC-1453, IAEA, Vienna, 19–36.
  • Risi, C., Bony, S. and Vimeux, F. 2008. Influence of convective processes on the isotopic composition (d18O and dD) of precipitation and water vapor in the tropics: 2. Physical interpretation of the amount effect. J. Geophys. Res. 113, D19306. doi:10.1029/2008JD009943
  • Risi, C., Landais, A., Bony, S., Jouzel, J., Masson‐Delmotte, V. and co-authors. 2010. Understanding the 17O excess glacial‐interglacial variations in Vostok precipitation. J. Geophys. Res. 115, D10112. doi:10.1029/2008JD011535
  • Roe, G. H. 2005. Orographic precipitation. Annu. Rev. Earth Planet. Sci. 33, 645–671. doi:10.1146/annurev.earth.33.092203.122541
  • Rohrmann, A., Strecker, M. R., Bookhagen, B., Mulch, A., Sachse, D. and co-authors. 2014. Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes. Earth Planet. Sci. Lett. 407, 187–195. doi:10.1016/j.epsl.2014.09.021
  • Rozanski, K., Araguas-Araguas, L. and Gonfiantini, R. 1993. Isotopic patterns in modern global precipitation. Climate Change in Continental Isotopic Records 78, 1–36.
  • Salamalikis, V., Argiriou, A. A. and Dotsika, E. 2016. Isotopic modeling of the sub-cloud evaporation effect in precipitation. Sci. Total Environ. 544, 1059–1072. doi:10.1016/j.scitotenv.2015.11.072
  • Salmon, O. E., Welp, L. R., Baldwin, M. E., Hajny, K. D., Stirm, B. H. and co-authors. 2019. Vertical profile observations of water vapor deuterium excess in the lower troposphere. Atmos. Chem. Phys. 19, 11525–11543. doi:10.5194/acp-19-11525-2019
  • Samuels‐Crow, K. E., Galewsky, J., Sharp, Z. D. and Dennis, K. J. 2014. Deuterium excess in subtropical free troposphere water vapor: Continuous measurements from the Chajnantor Plateau, northern Chile. Geophys. Res. Lett. 41, 8652–8659. doi:10.1002/2014GL062302
  • Saylor, J. E. and Horton, B. K. 2014. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 387, 120–131. doi:10.1016/j.epsl.2013.11.015
  • Schauer, A. J., Schoenemann, S. W. and Steig, E. J. 2016. Routine high-precision analysis of triple water-isotope ratios using cavity ring-down spectroscopy. Rapid Commun. Mass Spectrom. 30, 2059–2069. doi:10.1002/rcm.7682
  • Schoenemann, S. W., Schauer, A. J. and Steig, E. J. 2013. Measurement of SLAP2 and GISP δ17O and proposed VSMOW-SLAP normalization for δ17O and 17O(excess) . Rapid Commun. Mass Spectrom. 27, 582–590. doi:10.1002/rcm.6486
  • Schoenemann, S. W., Steig, E. J., Ding, Q., Markle, B. R. and Schauer, A. J. 2014. Triple water‐isotopologue record from WAIS Divide, Antarctica: Controls on glacial‐interglacial changes in 17O excess of precipitation. J. Geophys. Res. Atmos. 119, 8741–8763. doi:10.1002/2014JD021770
  • Shapiro, M. 1980. Turbulent mixing within tropopause folds as a mechanism for the exchange of chemical constituents between the stratosphere and troposphere. J. Atmos. Sci. 37, 994–1004. doi:10.1175/1520-0469(1980)037<0994:TMWTFA>2.0.CO;2
  • Sjostrom, D. J. and Welker, J. M. 2009. The influence of air mass source on the seasonal isotopic composition of precipitation, eastern USA. J. Geochem. Explor. 102, 103–112. doi:10.1016/j.gexplo.2009.03.001
  • Steig, E., Gkinis, V., Schauer, A., Schoenemann, S., Samek, K. and co-authors. 2014. Calibrated high-precision 17O-excess measurements using cavity ring-down spectroscopy with laser-current-tuned cavity resonance. Atmos. Meas. Tech. 7, 2421–2435. doi:10.5194/amt-7-2421-2014
  • Stewart, M. K. 1975. Stable isotope fractionation due to evaporation and isotopic exchange of falling waterdrops: Applications to atmospheric processes and evaporation of lakes. J. Geophys. Res. 80, 1133–1146. doi:10.1029/JC080i009p01133
  • Strachan, S. and Daly, C. 2017. Testing the daily PRISM air temperature model on semiarid mountain slopes. J. Geophys. Res. Atmos. 122, 5697–5715. doi:10.1002/2016JD025920
  • Tian, L., Yao, T., MacClune, K., White, J. W. C., Schilla, A. and co-authors. 2007. Stable isotopic variations in west China: A consideration of moisture sources. J. Geophys. Res. 112, 10112.
  • Uechi, Y. and Uemura, R. 2019. Dominant influence of the humidity in the moisture source region on the 17O-excess in precipitation on a subtropical island. Earth Planet. Sci. Lett. 513, 20–28. doi:10.1016/j.epsl.2019.02.012
  • Uemura, R., Barkan, E., Abe, O. and Luz, B. 2010. Triple isotope composition of oxygen in atmospheric water vapor. Geophys. Res. Lett. 37, L04402. doi:10.1029/2009GL041960
  • Uemura, R., Matsui, Y., Yoshimura, K., Motoyama, H. and Yoshida, N. 2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions. J. Geophys. Res. 113, D19114. doi:10.1029/2008JD010209
  • Wallace, J. M. and Hobbs, P. V. 2006. Atmospheric Science: An Introductory Survey. Boston, Massachusetts: Elsevier.
  • Wang, S., Zhang, M., Che, Y., Zhu, X. and Liu, X. 2016a. Influence of below-cloud evaporation on deuterium excess in precipitation of Arid Central Asia and its meteorological controls. J. Hydrometeor. 17, 1973–1984. doi:10.1175/JHM-D-15-0203.1
  • Wang, S., Zhang, M., Hughes, C. E., Zhu, X., Dong, L. and co-authors. 2016b. Factors controlling stable isotope composition of precipitation in arid conditions: an observation network in the Tianshan Mountains, central Asia. Tellus B 68, 26206. doi:10.3402/tellusb.v68.26206
  • Wang, Y., Cheng, H., Edwards, R. L., Kong, X., Shao, X. and co-authors. 2008. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years . Nature 451, 1090–1093. doi:10.1038/nature06692
  • Webster, C. R. and Heymsfield, A. J. 2003. Water isotope ratios D/H, 18O/16O, 17O/16O in and out of clouds map dehydration pathways. Science 302, 1742–1745. doi:10.1126/science.1089496
  • Whiteman, C. D. 2000. Mountain Meteorology: fundamentals and Applications. New York, New York: Oxford University Press.
  • Winkler, R., Landais, A., Risi, C., Baroni, M., Ekaykin, A. and co-authors. 2013. Interannual variation of water isotopologues at Vostok indicates a contribution from stratospheric water vapor. Proc. Natl. Acad. Sci. USA. 110, 17674–17679. doi:10.1073/pnas.1215209110
  • Winkler, R., Landais, A., Sodemann, H., Dümbgen, L., Prié, F. and co-authors. 2011. Deglaciation records of 17O-excess in East Antarctica: reliable reconstruction of oceanic relative humidity from coastal sites. Clim. Past Discuss. 7, 1845–1886. doi:10.5194/cpd-7-1845-2011