3,463
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Physical and chemical properties of aerosol particles and cloud residuals on Mt. Åreskutan in Central Sweden during summer 2014

, ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon & show all
Pages 1-16 | Received 04 Dec 2019, Accepted 17 May 2020, Published online: 12 Jun 2020

References

  • Andreae, M. O. and Gelencser, A. 2006. Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys. 6, 3131–3148. doi:10.5194/acp-6-3131-2006
  • Birch, M. E. and Cary, R. A. 1996. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 25, 221–241. doi:10.1080/02786829608965393
  • Campos, M. L. A. M., Nogueira, R. F. P., Dametto, P. R., Francisco, J. G. and Coelho, C. H. 2007. Dissolved organic carbon in rainwater: glassware decontamination and sample preservation and volatile organic carbon. Atmos. Environ. 41, 8924–8931. doi:10.1016/j.atmosenv.2007.08.017
  • Demoz, B. B., Collett, J. L. and Daube, B. C. 1996. On the caltech active strand cloudwater collectors. Atmos. Res. 41, 47–62. doi:10.1016/0169-8095(95)00044-5
  • Ditas, F., Shaw, R. A., Siebert, H., Simmel, M., Wehner, B. and co-authors. 2012. Aerosols-cloud microphysics-thermodynamics-turbulence: evaluating supersaturation in a marine stratocumulus cloud. Atmos. Chem. Phys. 12, 2459–2468. doi:10.5194/acp-12-2459-2012
  • Drewnick, F., Schneider, J., Hings, S. S., Hock, N., Noone, K. and co-authors. 2006. Measurement of ambient, interstitial, and residual aerosol particles on a mountaintop site in central Sweden using an aerosol mass spectrometer and a CVI. J. Atmos. Chem. 56, 1–20. doi:10.1007/s10874-006-9036-8
  • Dusek, U., Frank, G. P., Hildebrandt, L., Curtius, J., Schneider, J. and co-authors. 2006. Size matters more than chemistry for cloud-nucleating ability of aerosol particles. Science 312, 1375–1378. doi:10.1126/science.1125261
  • Ervens, B. 2015. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem. Rev. 115, 4157–4198. doi:10.1021/cr5005887
  • Franke, V., Zieger, P., Wideqvist, U., Navarro, J. C. A., Leck, C. and co-authors. 2017. Chemical composition and source analysis of carbonaceous aerosol particles at a mountaintop site in central Sweden. Tellus B: Chem. Phys. Meteorol. 69, 1353387. doi:10.1080/16000889.2017.1353387
  • Gérémy, G., Wobrock, W., Flossmann, A. I., Schwarzenböck, A. and Mertes, S. 2000. A modelling study on the activation of small Aitken-mode aerosol particles during CIME 97. Tellus B: Chem. Phys. Meteorol. 52, 959–979.
  • Goldstein, A. H. and Galbally, I. E. 2007. Known and unknown organic constituents in the Earth’s atmosphere. Environ. Sci. Technol. 41, 1514–1521. doi:10.1021/es072476p
  • Grahn, H., von Schoenberg, P. and Brännström, N. 2015. What’s that smell? Hydrogen sulphide transport from Bardarbunga to Scandinavia. J. Volcanol. Geotherm. Res. 303, 187–192. doi:10.1016/j.jvolgeores.2015.07.006
  • Hammer, E., Bukowiecki, N., Gysel, M., Jurányi, Z., Hoyle, C. R. and co-authors. 2014. Investigation of the effective peak supersaturation for liquid-phase cloudsat the high-alpine site Jungfraujoch, Switzerland (3580 m a.s.l.). Atmos. Chem. Phys. 14, 1123–1139. doi:10.5194/acp-14-1123-2014
  • Häkkinen, S. A. K., Äijälä, M., Lehtipalo, K., Junninen, H., Backman, J. and co-authors. 2012. Long-term volatility measurements of submicron atmospheric aerosol in Hyytiälä, Finland. Atmos. Chem. Phys. 12, 10771–10786. doi:10.5194/acp-12-10771-2012
  • Hao, L., Romakkaniemi, S., Kortelainen, A., Jaatinen, A., Portin, H. and co-authors. 2013. Aerosol chemical composition in cloud events by high resolution time-of-flight aerosol mass spectrometry. Environ. Sci. Technol. 47, 2645–2653. doi:10.1021/es302889w
  • Hobbs, P. V. 1993. Chapter 2: Aerosol-cloud interactions. In: International Geophysics (ed. P. V. Hobbs). Elsevier, Amsterdam, pp. 33–73.
  • Hong, J., Äijälä, M., Häme, S. A. K., Hao, L., Duplissy, J. and co-authors. 2017. Estimates of the organic aerosol volatility in a boreal forest using two independent methods. Atmos. Chem. Phys. 17, 4387–4399. doi:10.5194/acp-17-4387-2017
  • Hong, J., Häkkinen, S. A. K., Paramonov, M., Äijälä, M., Hakala, J. and co-authors. 2014. Hygroscopicity, CCN and volatility properties of submicron atmospheric aerosol in a boreal forest environment during the summer of 2010. Atmos. Chem. Phys. 14, 4733–4748. doi:10.5194/acp-14-4733-2014
  • IPCC. 2013. Climate change 2013: the physical science basis, Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA.
  • Jimenez, J. L., Canagaratna, M. R., Donahue, N. M., Prevot, A. S. H., Zhang, Q. and co-authors. 2009. Evolution of organic aerosols in the atmosphere. Science 326, 1525–1529. doi:10.1126/science.1180353
  • Köhler, H. 1936. The nucleus in and the growth of hygroscopic droplets. Trans. Faraday Soc. 32, 1152–1161. doi:10.1039/TF9363201152
  • Koehler, K. A., Kreidenweis, S. M., DeMott, P. J., Petters, M. D., Prenni, A. J. and co-authors. 2009. Hygroscopicity and cloud droplet activation of mineral dust aerosol. Geophys. Res. Lett. 36, L08805. doi:10.1029/2009GL037348
  • Korhonen, H., Carslaw, K. S., Spracklen, D. V., Ridley, D. A. and Ström, J. 2008. A global model study of processes controlling aerosol size distributions in the Arctic spring and summer. J. Geophys. Res. 113, 1–20.
  • Kruger, M. L., Mertes, S., Klimach, T., Cheng, Y. F., Su, H. and co-authors. 2014. Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements. Atmos. Meas. Tech. 7, 2615–2629. doi:10.5194/amt-7-2615-2014
  • Lidskog, R. and Sjödin, D. 2016. Extreme events and climate change: the post-disaster dynamics of forest fires and forest storms in Sweden. Scand. J. For. Res. 31, 148–155. doi:10.1080/02827581.2015.1113308
  • Liu, B. Y. H., Pui, D. Y. H., Whitby, K. T., Kittelson, D. B., Kousaka, Y. and co-authors. 1978. The aerosol mobility chromatograph: a new detector for sulfuric acid aerosols. In: Sulfur in the Atmosphere – Proceedings of the International Symposium, Dubrovnik, Yugoslavia, pp. 99–104.
  • Liu, D., Allan, J., Whitehead, J., Young, D., Flynn, M. and co-authors. 2013. Ambient black carbon particle hygroscopic properties controlled by mixing state and composition. Atmos. Chem. Phys. 13, 2015–2029. doi:10.5194/acp-13-2015-2013
  • Lowe, S. J., Partridge, D. G., Davies, J. F., Wilson, K. R., Topping, D. and co-authors. 2019. Key drivers of cloud response to surface-active organics. Nat. Commun. 10, 5214. doi:10.1038/s41467-019-12982-0
  • Mikhailov, E., Vlasenko, S., Rose, D. and Pöschl, U. 2013. Mass-based hygroscopicity parameter interaction model and measurement of atmospheric aerosol water uptake. Atmos. Chem. Phys. 13, 717–740. doi:10.5194/acp-13-717-2013
  • Mohr, C., Thornton, J. A., Heitto, A., Lopez-Hilfiker, F. D., Lutz, A. and co-authors. 2019. Molecular identification of organic vapors driving atmospheric nanoparticle growth. Nat. Commun. 10, 4442. doi:10.1038/s41467-019-12473-2
  • Müller, T., Henzing, J. S., de Leeuw, G., Wiedensohler, A., Alastuey, A. and co-authors. 2011. Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops. Atmos. Meas. Tech. 4, 245–268. doi:10.5194/amt-4-245-2011
  • Noone, K. J., Ogren, J. A., Heintzenberg, J., Charlson, R. J. and Covert, D. S. 1988. Design and calibration of a counterflow virtual impactor for sampling of atmospheric fog and cloud droplets. Aerosol Sci. Technol. 8, 235–244. doi:10.1080/02786828808959186
  • Ogren, J. and Rodhe, H. 1986. Measurements of the chemical composition of cloudwater at a clean air site in central Scandinavia. Tellus B: Chem. Phys. Meteorol. 38B, 190–196. doi:10.1111/j.1600-0889.1986.tb00186.x
  • Olenius, T., Yli-Juuti, T., Elm, J., Kontkanen, J. and Riipinen, I. 2018. New particle formation and growth. In: Physical Chemistry of Gas-Liquid Interfaces (eds. J. Faust and J. House). Elsevier, Amsterdam, pp. 315–352.
  • Ovadnevaite, J., Zuend, A., Laaksonen, A., Sanchez, K. J., Roberts, G. and co-authors. 2017. Surface tension prevails over solute effect in organic-influenced cloud droplet activation. Nature 546, 637–641. doi:10.1038/nature22806
  • Pajunoja, A., Lambe, A. T., Hakala, J., Rastak, N., Cummings, M. J. and co-authors. 2015. Adsorptive uptake of water by semisolid secondary organic aerosols: water uptake of SOA. Geophys. Res. Lett. 42, 3063–3068. doi:10.1002/2015GL063142
  • Petters, M. D. and Kreidenweis, S. M. 2007. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971. doi:10.5194/acp-7-1961-2007
  • Rastak, N., Pajunoja, A., Acosta Navarro, J. C., Ma, J., Song, M. and co-authors. 2017. Microphysical explanation of the RH-dependent water affinity of biogenic organic aerosol and its importance for climate. Geophys. Res. Lett. 44, 5167–5177. doi:10.1002/2017GL073056
  • Riipinen, I., Pierce, J. R., Donahue, N. M. and Pandis, S. N. 2010. Equilibration time scales of organic aerosol inside thermodenuders: evaporation kinetics versus thermodynamics. Atmos. Environ. 44, 597–607. doi:10.1016/j.atmosenv.2009.11.022
  • Rissler, J., Vestin, A., Swietlicki, E., Fisch, G., Zhou, J. and co-authors. 2006. Size distribution and hygroscopic properties of aerosol particles from dry-season biomass burning in Amazonia. Atmos. Chem. Phys. 6, 471–491. doi:10.5194/acp-6-471-2006
  • Romonosky, D. E., Li, Y., Shiraiwa, M., Laskin, A., Laskin, J. and co-authors. 2017. Aqueous photochemistry of secondary organic aerosol of α-pinene and α-humulene oxidized with ozone, hydroxyl radical, and nitrate radical. J. Phys. Chem. A 121, 1298–1309. doi:10.1021/acs.jpca.6b10900
  • Ruehl, C. R., Davies, J. F. and Wilson, K. R. 2016. An interfacial mechanism for cloud droplet formation on organic aerosols. Science 351, 1447–1450. doi:10.1126/science.aad4889
  • Schwarzenboeck, A., Heintzenberg, J. and Mertes, S. 2000. Incorporation of aerosol particles between 25 and 850 nm into cloud elements: measurements with a new complementary sampling system. Atmos. Res. 52, 241–260. doi:10.1016/S0169-8095(99)00034-4
  • Seifert, M., Ström, J., Krejci, R., Minikin, A., Petzold, A. and co-authors. 2004. Thermal stability analysis of particles incorporated in cirrus crystals and of non-activated particles in between the cirrus crystals: comparing clean and polluted air masses. Atmos. Chem. Phys. 4, 1343–1353. doi:10.5194/acp-4-1343-2004
  • Seinfeld, J. H. and Pandis, S. N. 2006. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. 2nd ed. John Wiley & Sons, Hoboken, NJ.
  • Shingler, T., Dey, S., Sorooshian, A., Brechtel, F. J., Wang, Z. and co-authors. 2012. Characterisation and airborne deployment of a new counterflow virtual impactor inlet. Atmos. Meas. Tech. 5, 1259–1269. doi:10.5194/amt-5-1259-2012
  • Targino, A. C., Noone, K. J., Drewnick, F., Schneider, J., Krejci, R. and co-authors. 2007. Microphysical and chemical characteristics of cloud droplet residuals and interstitial particles in continental stratocumulus clouds. Atmos. Res. 86, 225–240. doi:10.1016/j.atmosres.2007.05.001
  • Theobald, M. R., Vivanco, M. G., Aas, W., Andersson, C., Ciarelli, G. and co-authors. 2019. An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010. Atmos. Chem. Phys. 19, 379–405. doi:10.5194/acp-19-379-2019
  • Topping, D., Connolly, P. and McFiggans, G. 2013. Cloud droplet number enhanced by co-condensation of organic vapours. Nat. Geosci. 6, 443–446. doi:10.1038/ngeo1809
  • Topping, D. O., McFiggans, G. B. and Coe, H. 2005. A curved multi-component aerosol hygroscopicity model framework: Part 1 – inorganic compounds. Atmos. Chem. Phys. 5, 1205–1222. doi:10.5194/acp-5-1205-2005
  • Tritscher, T., Dommen, J., Decarlo, P. F., Gysel, M., Barmet, P. B. and co-authors. 2011. Volatility and hygroscopicity of aging secondary organic aerosol in a smog chamber. Atmos. Chem. Phys. 11, 11477–11496. doi:10.5194/acp-11-11477-2011
  • Tunved, P., Hansson, H.-C., Kerminen, V.-M., Ström, J., Maso, M. D. and co-authors. 2006. High natural aerosol loading over boreal forests. Science 312, 261–263. doi:10.1126/science.1123052
  • Turpin, B. J. and Lim, H.-J. 2001. Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci. Technol. 35, 602–610. doi:10.1080/02786820119445
  • Väisänen, O., Ruuskanen, A., Ylisirniö, A., Miettinen, P., Portin, H. and co-authors. 2016. In-cloud measurements highlight the role of aerosol hygroscopicity in cloud droplet formation. Atmos. Chem. Phys. 16, 10385–10398. doi:10.5194/acp-16-10385-2016
  • Vega, C. P., Mårtensson, E. M., Wideqvist, U., Kaiser, J., Zieger, P. and co-authors. 2019. Composition, isotopic fingerprint and source attribution of nitrate deposition from rain and fog at a Sub-Arctic Mountain site in Central Sweden (Mt Åreskutan). Tellus B: Chem. Phys. Meteorol. 71, 1559398–1559319. doi:10.1080/16000889.2018.1559398
  • Villani, P., Picard, D., Marchand, N. and Laj, P. 2007. Design and validation of a 6-volatility tandem differential mobility analyzer (VTDMA). Aerosol Sci. Technol. 41, 898–906. doi:10.1080/02786820701534593
  • von der Weiden, S.-L., Drewnick, F. and Borrmann, S. 2009. Particle loss calculator – a new software tool for the assessment of the performance of aerosol inlet systems.pdf. Atmos. Meas. Tech. 2, 479–494. doi:10.5194/amt-2-479-2009
  • Wallén, A., Lidén, G. and Hansson, H.-C. 2010. Measured elemental carbon by thermo-optical transmittance analysis in water-soluble extracts from diesel exhaust, woodsmoke, and ambient particulate samples. J. Occup. Environ. Hyg. 7, 35–45.